No flags found
Use flags to group coverage reports by test type, project and/or folders.
Then setup custom commit statuses and notifications for each flag.
e.g., #unittest #integration
#production #enterprise
#frontend #backend
9047719
... +0 ...
9437fb3
Use flags to group coverage reports by test type, project and/or folders.
Then setup custom commit statuses and notifications for each flag.
e.g., #unittest #integration
#production #enterprise
#frontend #backend
73 | 73 | test[label] = test[label].str.strip(' .') |
|
74 | 74 | cols = train.select_dtypes(object).columns |
|
75 | 75 | for c in cols: |
|
76 | - | train[c] = train[c].str.strip() |
|
76 | + | train[c] = train[c].str.strip() # pylint: disable=E1136,E1137 |
|
77 | 77 | for c in cols: |
|
78 | 78 | test[c] = test[c].str.strip() |
|
79 | 79 | return train, test |
115 | 115 | # API scikit-learn |
|
116 | 116 | ################### |
|
117 | 117 | ||
118 | - | def fit(self, X, y=None, **kwargs): |
|
118 | + | def fit(self, X, y=None, sample_weight=None, **kwargs): |
|
119 | 119 | """ |
|
120 | 120 | Apprends un modèle pour chaque modalité d'une catégorie. |
|
121 | 121 | ||
122 | 122 | @param X features |
|
123 | 123 | @param y cibles |
|
124 | + | @param sample_weight poids de chaque observation |
|
124 | 125 | @return self, lui-même |
|
125 | 126 | ||
126 | 127 | La fonction n'est pas parallélisée mais elle le pourrait. |
131 | 132 | raise ValueError( # pragma: no cover |
|
132 | 133 | "One of the row has a missing category.") |
|
133 | 134 | ||
134 | - | sample_weight = kwargs.get('sample_weight', None) |
|
135 | 135 | res = {} |
|
136 | 136 | for c in sorted(cats): |
|
137 | 137 | _, xcat, ycat, scat = self._filter_cat(c, X, y, sample_weight) |
Files | Coverage |
---|---|
papierstat | -0.01% 93.89% |
Project Totals (21 files) | 93.89% |
9437fb3
9047719