migrate to ghactions for ci/cd
1 |
#!/usr/bin/python
|
|
2 |
# -*- coding: utf-8 -*-
|
|
3 |
|
|
4 | 3 |
"""
|
5 |
|
|
6 |
The persistent entropy has been defined in [1]. A precursor of this definition was given in [2]
|
|
7 |
to measure how different bars of the barcode are in length.
|
|
8 |
|
|
9 |
[1] M. Rucco, F. Castiglione, E. Merelli, M. Pettini, Characterisation of the
|
|
10 |
idiotypic immune network through persistent entropy, in: Proc. Complex, 2015.
|
|
11 |
[2] H. Chintakunta, T. Gentimis, R. Gonzalez-Diaz, M.-J. Jimenez,
|
|
12 |
H. Krim, An entropy-based persistence barcode, Pattern Recognition
|
|
13 |
48 (2) (2015) 391–401.
|
|
14 |
|
|
15 |
Implementation of persistent entropy
|
|
16 |
|
|
17 |
Author: Eduardo Paluzo Hidalgo (cimagroup, University of Seville)
|
|
18 |
contact: epaluzo@us.es
|
|
19 |
|
|
20 |
"""
|
|
21 |
|
|
22 | 3 |
from __future__ import division |
23 | 3 |
import numpy as np |
24 |
|
|
25 |
|
|
26 | 3 |
__all__ = ["persistent_entropy"] |
27 |
|
|
28 |
|
|
29 | 3 |
def persistent_entropy( |
30 |
dgms, keep_inf=False, val_inf=None, normalize=False |
|
31 |
):
|
|
32 |
"""
|
|
33 |
Perform the persistent entropy values of a family of persistence barcodes (or persistence diagrams).
|
|
34 |
Assumes that the input diagrams are from a determined dimension. If the infinity bars have any meaning
|
|
35 |
in your experiment and you want to keep them, remember to give the value you desire to val_Inf.
|
|
36 |
|
|
37 |
Parameters
|
|
38 |
-----------
|
|
39 |
dgms: ndarray (n_pairs, 2) or list of diagrams
|
|
40 |
array or list of arrays of birth/death pairs of a persistence barcode of a determined dimension.
|
|
41 |
keep_inf: bool, default False
|
|
42 |
if False, the infinity bars are removed.
|
|
43 |
if True, the infinity bars remain.
|
|
44 |
val_inf: float, default None
|
|
45 |
substitution value to infinity.
|
|
46 |
normalize: bool, default False
|
|
47 |
if False, the persistent entropy values are not normalized.
|
|
48 |
if True, the persistent entropy values are normalized.
|
|
49 |
|
|
50 |
Returns
|
|
51 |
--------
|
|
52 |
|
|
53 |
ps: ndarray (n_pairs,)
|
|
54 |
array of persistent entropy values corresponding to each persistence barcode.
|
|
55 |
|
|
56 |
"""
|
|
57 |
|
|
58 |
if isinstance(dgms, list) == False: |
|
59 | 3 |
dgms = [dgms] |
60 |
|
|
61 |
# Step 1: Remove infinity bars if keep_inf = False. If keep_inf = True, infinity value is substituted by val_inf.
|
|
62 |
|
|
63 |
if keep_inf == False: |
|
64 |
dgms = [(dgm[dgm[:, 1] != np.inf]) for dgm in dgms] |
|
65 |
if keep_inf == True: |
|
66 |
if val_inf != None: |
|
67 |
dgms = [ |
|
68 |
np.where(dgm == np.inf, val_inf, dgm) |
|
69 |
for dgm in dgms |
|
70 |
]
|
|
71 |
else: |
|
72 |
raise Exception( |
|
73 |
"Remember: You need to provide a value to infinity bars if you want to keep them."
|
|
74 |
)
|
|
75 |
|
|
76 |
# Step 2: Persistent entropy computation.
|
|
77 | 3 |
ps = [] |
78 |
for dgm in dgms: |
|
79 | 3 |
l = dgm[:, 1] - dgm[:, 0] |
80 |
if all(l > 0): |
|
81 | 3 |
L = np.sum(l) |
82 | 3 |
p = l / L |
83 | 3 |
E = -np.sum(p * np.log(p)) |
84 |
if normalize == True: |
|
85 |
E = E / np.log(len(l)) |
|
86 | 3 |
ps.append(E) |
87 |
else: |
|
88 |
raise Exception("A bar is born after dying") |
|
89 |
|
|
90 | 3 |
return np.array(ps) |
Read our documentation on viewing source code .