No flags found
Use flags to group coverage reports by test type, project and/or folders.
Then setup custom commit statuses and notifications for each flag.
e.g., #unittest #integration
#production #enterprise
#frontend #backend
cf7c962
... +0 ...
1987fa2
Use flags to group coverage reports by test type, project and/or folders.
Then setup custom commit statuses and notifications for each flag.
e.g., #unittest #integration
#production #enterprise
#frontend #backend
65 | 65 | !! cust_id, date_most_recent, recency_days, transaction_count, |
|
66 | 66 | amount |
|
67 | 67 | ) %>% |
|
68 | - | magrittr::set_names(c("customer_id", "date_most_recent", "recency_days", "transaction_count", "amount")) |
|
68 | + | set_names(c("customer_id", "date_most_recent", "recency_days", "transaction_count", "amount")) |
|
69 | 69 | ||
70 | 70 | result$recency_score <- NA |
|
71 | 71 | result$frequency_score <- NA |
49 | 49 | ||
50 | 50 | ulm <- |
|
51 | 51 | mapdata %>% |
|
52 | - | magrittr::extract2("monetary") %>% |
|
52 | + | extract2("monetary") %>% |
|
53 | 53 | max() %>% |
|
54 | 54 | ceiling(.) |
|
55 | 55 | ||
56 | 56 | llm <- |
|
57 | 57 | mapdata %>% |
|
58 | - | magrittr::extract2("monetary") %>% |
|
58 | + | extract2("monetary") %>% |
|
59 | 59 | min() %>% |
|
60 | 60 | floor(.) |
|
61 | 61 | ||
62 | 62 | bins <- |
|
63 | 63 | mapdata %>% |
|
64 | - | magrittr::use_series(frequency_score) %>% |
|
64 | + | use_series(frequency_score) %>% |
|
65 | 65 | max() |
|
66 | 66 | ||
67 | 67 | guide_breaks <- |
|
68 | 68 | seq(llm, ulm, length.out = bins) %>% |
|
69 | 69 | round() |
|
70 | 70 | ||
71 | 71 | p <- |
|
72 | - | ggplot2::ggplot(data = mapdata) + |
|
73 | - | ggplot2::geom_tile(ggplot2::aes(x = frequency_score, y = recency_score, fill = monetary)) + |
|
74 | - | ggplot2::scale_fill_gradientn(limits = c(llm, ulm), |
|
72 | + | ggplot(data = mapdata) + |
|
73 | + | geom_tile(aes(x = frequency_score, y = recency_score, fill = monetary)) + |
|
74 | + | scale_fill_gradientn(limits = c(llm, ulm), |
|
75 | 75 | colours = RColorBrewer::brewer.pal(n = brewer_n, name = brewer_name), |
|
76 | 76 | name = legend_title) + |
|
77 | - | ggplot2::ggtitle(plot_title) + ggplot2::xlab(xaxis_title) + ggplot2::ylab(yaxis_title) + |
|
78 | - | ggplot2::theme(plot.title = ggplot2::element_text(hjust = plot_title_justify)) |
|
77 | + | ggtitle(plot_title) + xlab(xaxis_title) + ylab(yaxis_title) + |
|
78 | + | theme(plot.title = element_text(hjust = plot_title_justify)) |
|
79 | 79 | ||
80 | 80 | if (print_plot) { |
|
81 | 81 | print(p) |
132 | 132 | ||
133 | 133 | p <- |
|
134 | 134 | rfm_hist_data(rfm_table) %>% |
|
135 | - | ggplot2::ggplot(ggplot2::aes(score)) + |
|
136 | - | ggplot2::geom_histogram(bins = hist_bins, fill = hist_color) + |
|
137 | - | ggplot2::ylab(yaxis_title) + ggplot2::ggtitle(plot_title) + ggplot2::xlab(xaxis_title) + |
|
138 | - | ggplot2::facet_grid(. ~ rfm, scales = "free_x", |
|
139 | - | labeller = ggplot2::labeller( |
|
135 | + | ggplot(aes(score)) + |
|
136 | + | geom_histogram(bins = hist_bins, fill = hist_color) + |
|
137 | + | ylab(yaxis_title) + ggtitle(plot_title) + xlab(xaxis_title) + |
|
138 | + | facet_grid(. ~ rfm, scales = "free_x", |
|
139 | + | labeller = labeller( |
|
140 | 140 | rfm = c(amount = hist_m_label, recency_days = hist_r_label, |
|
141 | 141 | transaction_count = hist_f_label))) + |
|
142 | - | ggplot2::theme(plot.title = ggplot2::element_text(hjust = plot_title_justify)) |
|
142 | + | theme(plot.title = element_text(hjust = plot_title_justify)) |
|
143 | 143 | ||
144 | 144 | if (print_plot) { |
|
145 | 145 | print(p) |
185 | 185 | ||
186 | 186 | p <- |
|
187 | 187 | rfm_barchart_data(rfm_table) %>% |
|
188 | - | ggplot2::ggplot() + |
|
189 | - | ggplot2::geom_bar(ggplot2::aes(x = monetary_score), fill = bar_color) + |
|
190 | - | ggplot2::facet_grid(recency_score ~ frequency_score) + |
|
191 | - | ggplot2::scale_y_continuous(sec.axis = ggplot2::sec_axis(~ ., name = sec_yaxis_title)) + |
|
192 | - | ggplot2::xlab(xaxis_title) + ggplot2::ylab(" ") + ggplot2::ggtitle(sec_xaxis_title) + |
|
193 | - | ggplot2::theme( |
|
194 | - | plot.title = ggplot2::element_text( |
|
188 | + | ggplot() + |
|
189 | + | geom_bar(aes(x = monetary_score), fill = bar_color) + |
|
190 | + | facet_grid(recency_score ~ frequency_score) + |
|
191 | + | scale_y_continuous(sec.axis = sec_axis(~ ., name = sec_yaxis_title)) + |
|
192 | + | xlab(xaxis_title) + ylab(" ") + ggtitle(sec_xaxis_title) + |
|
193 | + | theme( |
|
194 | + | plot.title = element_text( |
|
195 | 195 | face = "plain", size = 11, hjust = 0.5 |
|
196 | 196 | ), |
|
197 | - | axis.text.y = ggplot2::element_blank(), |
|
198 | - | axis.ticks.y = ggplot2::element_blank() |
|
197 | + | axis.text.y = element_blank(), |
|
198 | + | axis.ticks.y = element_blank() |
|
199 | 199 | ) |
|
200 | 200 | ||
201 | 201 | if (print_plot) { |
248 | 248 | ||
249 | 249 | data <- |
|
250 | 250 | rfm_table %>% |
|
251 | - | magrittr::use_series(rfm) %>% |
|
251 | + | use_series(rfm) %>% |
|
252 | 252 | dplyr::count(transaction_count) |
|
253 | 253 | ||
254 | 254 | ylim_max <- |
|
255 | 255 | data %>% |
|
256 | 256 | dplyr::pull(n) %>% |
|
257 | 257 | max() %>% |
|
258 | - | magrittr::multiply_by(1.1) %>% |
|
258 | + | multiply_by(1.1) %>% |
|
259 | 259 | ceiling(.) |
|
260 | 260 | ||
261 | 261 | p <- |
|
262 | 262 | data %>% |
|
263 | - | ggplot2::ggplot(ggplot2::aes(x = transaction_count, y = n)) + |
|
264 | - | ggplot2::geom_bar(stat = "identity", fill = bar_color) + |
|
265 | - | ggplot2::xlab(xaxis_title) + ggplot2::ylab(yaxis_title) + ggplot2::ylim(0, ylim_max) + |
|
266 | - | ggplot2::ggtitle(plot_title) + |
|
267 | - | ggplot2::geom_text( |
|
268 | - | ggplot2::aes(label = n, y = n + 3), position = ggplot2::position_dodge(0.9), vjust = 0 |
|
263 | + | ggplot(aes(x = transaction_count, y = n)) + |
|
264 | + | geom_bar(stat = "identity", fill = bar_color) + |
|
265 | + | xlab(xaxis_title) + ylab(yaxis_title) + ylim(0, ylim_max) + |
|
266 | + | ggtitle(plot_title) + |
|
267 | + | geom_text( |
|
268 | + | aes(label = n, y = n + 3), position = position_dodge(0.9), vjust = 0 |
|
269 | 269 | ) + |
|
270 | - | ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5)) |
|
270 | + | theme(plot.title = element_text(hjust = 0.5)) |
|
271 | 271 | ||
272 | 272 | if (print_plot) { |
|
273 | 273 | print(p) |
316 | 316 | ||
317 | 317 | p <- |
|
318 | 318 | rfm_table %>% |
|
319 | - | magrittr::use_series(rfm) %>% |
|
320 | - | ggplot2::ggplot() + |
|
321 | - | ggplot2::geom_point(ggplot2::aes(x = amount, y = recency_days), color = point_color) + |
|
322 | - | ggplot2::xlab(xaxis_title) + ggplot2::ylab(yaxis_title) + ggplot2::ggtitle(plot_title) |
|
319 | + | use_series(rfm) %>% |
|
320 | + | ggplot() + |
|
321 | + | geom_point(aes(x = amount, y = recency_days), color = point_color) + |
|
322 | + | xlab(xaxis_title) + ylab(yaxis_title) + ggtitle(plot_title) |
|
323 | 323 | ||
324 | 324 | if (print_plot) { |
|
325 | 325 | print(p) |
339 | 339 | ||
340 | 340 | p <- |
|
341 | 341 | rfm_table %>% |
|
342 | - | magrittr::use_series(rfm) %>% |
|
343 | - | ggplot2::ggplot() + |
|
344 | - | ggplot2::geom_point(ggplot2::aes(x = amount, y = transaction_count), color = point_color) + |
|
345 | - | ggplot2::xlab(xaxis_title) + ggplot2::ylab(yaxis_title) + ggplot2::ggtitle(plot_title) |
|
342 | + | use_series(rfm) %>% |
|
343 | + | ggplot() + |
|
344 | + | geom_point(aes(x = amount, y = transaction_count), color = point_color) + |
|
345 | + | xlab(xaxis_title) + ylab(yaxis_title) + ggtitle(plot_title) |
|
346 | 346 | ||
347 | 347 | if (print_plot) { |
|
348 | 348 | print(p) |
362 | 362 | ||
363 | 363 | p <- |
|
364 | 364 | rfm_table %>% |
|
365 | - | magrittr::use_series(rfm) %>% |
|
366 | - | ggplot2::ggplot() + |
|
367 | - | ggplot2::geom_point(ggplot2::aes(x = transaction_count, y = recency_days), color = point_color) + |
|
368 | - | ggplot2::xlab(xaxis_title) + ggplot2::ylab(yaxis_title) + ggplot2::ggtitle(plot_title) |
|
365 | + | use_series(rfm) %>% |
|
366 | + | ggplot() + |
|
367 | + | geom_point(aes(x = transaction_count, y = recency_days), color = point_color) + |
|
368 | + | xlab(xaxis_title) + ylab(yaxis_title) + ggtitle(plot_title) |
|
369 | 369 | ||
370 | 370 | if (print_plot) { |
|
371 | 371 | print(p) |
57 | 57 | result <- |
|
58 | 58 | data %>% |
|
59 | 59 | dplyr::select(!! cust_id, !! n_recency, !! order_count, !! revenues) %>% |
|
60 | - | magrittr::set_names(c("customer_id", "recency_days", "transaction_count", "amount")) |
|
60 | + | set_names(c("customer_id", "recency_days", "transaction_count", "amount")) |
|
61 | 61 | ||
62 | 62 | result$recency_score <- NA |
|
63 | 63 | result$frequency_score <- NA |
42 | 42 | ||
43 | 43 | rfm_score_table <- |
|
44 | 44 | data %>% |
|
45 | - | magrittr::use_series(rfm) %>% |
|
45 | + | use_series(rfm) %>% |
|
46 | 46 | dplyr::mutate(segment = 1) |
|
47 | 47 | ||
48 | 48 | n_segments <- length(segment_names) |
109 | 109 | dplyr::group_by(segment) %>% |
|
110 | 110 | dplyr::select(segment, recency_days) %>% |
|
111 | 111 | dplyr::summarise(avg_recency = stats::median(recency_days)) %>% |
|
112 | - | # dplyr::rename(segment = segment, avg_recency = `median(recency_days)`) %>% |
|
113 | 112 | dplyr::arrange(avg_recency) |
|
114 | 113 | ||
115 | 114 | n_fill <- nrow(data) |
|
116 | 115 | ||
117 | 116 | p <- |
|
118 | - | ggplot2::ggplot(data, ggplot2::aes(segment, avg_recency)) + |
|
119 | - | ggplot2::geom_bar(stat = "identity", fill = ggthemes::calc_pal()(n_fill)) + |
|
120 | - | ggplot2::xlab("Segment") + ggplot2::ylab("Median Recency") + |
|
121 | - | ggplot2::ggtitle("Median Recency by Segment") + |
|
122 | - | ggplot2::coord_flip() + |
|
123 | - | ggplot2::theme( |
|
124 | - | plot.title = ggplot2::element_text(hjust = 0.5) |
|
117 | + | ggplot(data, aes(segment, avg_recency)) + |
|
118 | + | geom_bar(stat = "identity", fill = ggthemes::calc_pal()(n_fill)) + |
|
119 | + | xlab("Segment") + ylab("Median Recency") + |
|
120 | + | ggtitle("Median Recency by Segment") + |
|
121 | + | coord_flip() + |
|
122 | + | theme( |
|
123 | + | plot.title = element_text(hjust = 0.5) |
|
125 | 124 | ) |
|
126 | 125 | ||
127 | 126 | if (print_plot) { |
151 | 150 | n_fill <- nrow(data) |
|
152 | 151 | ||
153 | 152 | p <- |
|
154 | - | ggplot2::ggplot(data, ggplot2::aes(segment, avg_frequency)) + |
|
155 | - | ggplot2::geom_bar(stat = "identity", fill = ggthemes::calc_pal()(n_fill)) + |
|
156 | - | ggplot2::xlab("Segment") + ggplot2::ylab("Median Frequency") + |
|
157 | - | ggplot2::ggtitle("Median Frequency by Segment") + |
|
158 | - | ggplot2::coord_flip() + |
|
159 | - | ggplot2::theme( |
|
160 | - | plot.title = ggplot2::element_text(hjust = 0.5) |
|
153 | + | ggplot(data, aes(segment, avg_frequency)) + |
|
154 | + | geom_bar(stat = "identity", fill = ggthemes::calc_pal()(n_fill)) + |
|
155 | + | xlab("Segment") + ylab("Median Frequency") + |
|
156 | + | ggtitle("Median Frequency by Segment") + |
|
157 | + | coord_flip() + |
|
158 | + | theme( |
|
159 | + | plot.title = element_text(hjust = 0.5) |
|
161 | 160 | ) |
|
162 | 161 | ||
163 | 162 | if (print_plot) { |
188 | 187 | n_fill <- nrow(data) |
|
189 | 188 | ||
190 | 189 | p <- |
|
191 | - | ggplot2::ggplot(data, ggplot2::aes(segment, avg_monetary)) + |
|
192 | - | ggplot2::geom_bar(stat = "identity", fill = ggthemes::calc_pal()(n_fill)) + |
|
193 | - | ggplot2::xlab("Segment") + ggplot2::ylab("Median Monetary Value") + |
|
194 | - | ggplot2::ggtitle("Median Monetary Value by Segment") + |
|
195 | - | ggplot2::coord_flip() + |
|
196 | - | ggplot2::theme( |
|
197 | - | plot.title = ggplot2::element_text(hjust = 0.5) |
|
190 | + | ggplot(data, aes(segment, avg_monetary)) + |
|
191 | + | geom_bar(stat = "identity", fill = ggthemes::calc_pal()(n_fill)) + |
|
192 | + | xlab("Segment") + ylab("Median Monetary Value") + |
|
193 | + | ggtitle("Median Monetary Value by Segment") + |
|
194 | + | coord_flip() + |
|
195 | + | theme( |
|
196 | + | plot.title = element_text(hjust = 0.5) |
|
198 | 197 | ) |
|
199 | 198 | ||
200 | 199 | if (print_plot) { |
Files | Coverage |
---|---|
R | 88.69% |
Project Totals (9 files) | 88.69% |
1987fa2
cf7c962