src/probnum/__init__.py
12
12
0
0
100.00%
src/probnum/_config.py
48
44
0
4
91.67%
src/probnum/_function.py
42
40
0
2
95.24%
src/probnum/_pnmethod/__init__.py
3
3
0
0
100.00%
src/probnum/_pnmethod/_probabilistic_numerical_method.py
11
11
0
0
100.00%
src/probnum/_pnmethod/_stopping_criterion.py
16
16
0
0
100.00%
src/probnum/conftest.py
7
7
0
0
100.00%
src/probnum/diffeq/__init__.py
10
10
0
0
100.00%
src/probnum/diffeq/_odesolution.py
15
15
0
0
100.00%
src/probnum/diffeq/_odesolver.py
84
84
0
0
100.00%
src/probnum/diffeq/_odesolver_state.py
11
11
0
0
100.00%
src/probnum/diffeq/_perturbsolve_ivp.py
30
30
0
0
100.00%
src/probnum/diffeq/_probsolve_ivp.py
24
22
1
1
91.67%
src/probnum/diffeq/_utils.py
11
11
0
0
100.00%
src/probnum/diffeq/callbacks/__init__.py
5
5
0
0
100.00%
src/probnum/diffeq/callbacks/_callback.py
10
10
0
0
100.00%
src/probnum/diffeq/callbacks/_discrete_callback.py
10
10
0
0
100.00%
src/probnum/diffeq/odefilter/__init__.py
6
6
0
0
100.00%
src/probnum/diffeq/odefilter/_odefilter.py
86
84
1
1
97.67%
src/probnum/diffeq/odefilter/_odefilter_solution.py
32
29
0
3
90.63%
src/probnum/diffeq/odefilter/approx_strategies/__init__.py
6
6
0
0
100.00%
src/probnum/diffeq/odefilter/approx_strategies/_approx_strategy.py
4
4
0
0
100.00%
src/probnum/diffeq/odefilter/approx_strategies/_ek.py
24
24
0
0
100.00%
src/probnum/diffeq/odefilter/information_operators/__init__.py
9
9
0
0
100.00%
...bnum/diffeq/odefilter/information_operators/_approx_information_operator.py
23
21
0
2
91.30%
src/probnum/diffeq/odefilter/information_operators/_information_operator.py
32
32
0
0
100.00%
src/probnum/diffeq/odefilter/information_operators/_ode_residual.py
35
35
0
0
100.00%
src/probnum/diffeq/odefilter/init_routines/__init__.py
5
5
0
0
100.00%
src/probnum/diffeq/odefilter/init_routines/_autodiff.py
75
70
1
4
93.33%
src/probnum/diffeq/odefilter/init_routines/_interface.py
14
12
0
2
85.71%
src/probnum/diffeq/odefilter/init_routines/_non_probabilistic_fit.py
48
48
0
0
100.00%
src/probnum/diffeq/odefilter/init_routines/_stack.py
28
28
0
0
100.00%
src/probnum/diffeq/odefilter/utils/__init__.py
2
2
0
0
100.00%
src/probnum/diffeq/odefilter/utils/_problem_utils.py
41
41
0
0
100.00%
src/probnum/diffeq/perturbed/__init__.py
1
1
0
0
100.00%
src/probnum/diffeq/perturbed/scipy_wrapper/__init__.py
5
5
0
0
100.00%
src/probnum/diffeq/perturbed/scipy_wrapper/_wrapped_scipy_odesolution.py
17
17
0
0
100.00%
src/probnum/diffeq/perturbed/scipy_wrapper/_wrapped_scipy_solver.py
50
50
0
0
100.00%
src/probnum/diffeq/perturbed/step/__init__.py
4
4
0
0
100.00%
src/probnum/diffeq/perturbed/step/_perturbation_functions.py
19
17
1
1
89.47%
src/probnum/diffeq/perturbed/step/_perturbedstepsolution.py
22
22
0
0
100.00%
src/probnum/diffeq/perturbed/step/_perturbedstepsolver.py
43
43
0
0
100.00%
src/probnum/diffeq/stepsize/__init__.py
6
6
0
0
100.00%
src/probnum/diffeq/stepsize/_propose_firststep.py
5
5
0
0
100.00%
src/probnum/diffeq/stepsize/_steprule.py
53
51
1
1
96.23%
src/probnum/filtsmooth/__init__.py
7
7
0
0
100.00%
src/probnum/filtsmooth/_bayesfiltsmooth.py
4
4
0
0
100.00%
src/probnum/filtsmooth/_kalman_filter_smoother.py
33
33
0
0
100.00%
src/probnum/filtsmooth/_timeseriesposterior.py
65
63
1
1
96.92%
src/probnum/filtsmooth/gaussian/__init__.py
7
7
0
0
100.00%
src/probnum/filtsmooth/gaussian/_kalman.py
63
43
0
20
68.25%
src/probnum/filtsmooth/gaussian/_kalmanposterior.py
126
107
9
10
84.92%
src/probnum/filtsmooth/gaussian/approx/__init__.py
6
6
0
0
100.00%
src/probnum/filtsmooth/gaussian/approx/_extendedkalman.py
39
39
0
0
100.00%
src/probnum/filtsmooth/gaussian/approx/_interface.py
20
20
0
0
100.00%
src/probnum/filtsmooth/gaussian/approx/_unscentedkalman.py
64
63
0
1
98.44%
src/probnum/filtsmooth/optim/__init__.py
9
9
0
0
100.00%
src/probnum/filtsmooth/optim/_gauss_newton.py
17
17
0
0
100.00%
src/probnum/filtsmooth/optim/_iterated_component.py
29
23
1
5
79.31%
src/probnum/filtsmooth/optim/_state_space_optimizer.py
17
15
1
1
88.24%
src/probnum/filtsmooth/optim/_stopping_criterion.py
22
22
0
0
100.00%
src/probnum/filtsmooth/particle/__init__.py
9
9
0
0
100.00%
src/probnum/filtsmooth/particle/_importance_distributions.py
51
47
2
2
92.16%
src/probnum/filtsmooth/particle/_particle_filter.py
72
69
2
1
95.83%
src/probnum/filtsmooth/particle/_particle_filter_posterior.py
10
10
0
0
100.00%
src/probnum/filtsmooth/utils/__init__.py
2
2
0
0
100.00%
src/probnum/filtsmooth/utils/_merge_regression_problems.py
34
34
0
0
100.00%
src/probnum/linalg/__init__.py
6
6
0
0
100.00%
src/probnum/linalg/_bayescg.py
2
2
0
0
100.00%
src/probnum/linalg/_problinsolve.py
92
49
22
21
53.26%
src/probnum/linalg/solvers/__init__.py
10
10
0
0
100.00%
src/probnum/linalg/solvers/_probabilistic_linear_solver.py
38
38
0
0
100.00%
src/probnum/linalg/solvers/_state.py
68
67
0
1
98.53%
src/probnum/linalg/solvers/belief_updates/__init__.py
4
4
0
0
100.00%
src/probnum/linalg/solvers/belief_updates/_linear_solver_belief_update.py
6
6
0
0
100.00%
src/probnum/linalg/solvers/belief_updates/matrix_based/__init__.py
5
5
0
0
100.00%
...g/solvers/belief_updates/matrix_based/_matrix_based_linear_belief_update.py
25
25
0
0
100.00%
...belief_updates/matrix_based/_symmetric_matrix_based_linear_belief_update.py
25
25
0
0
100.00%
src/probnum/linalg/solvers/belief_updates/solution_based/__init__.py
3
3
0
0
100.00%
.../solvers/belief_updates/solution_based/_projected_residual_belief_update.py
27
27
0
0
100.00%
src/probnum/linalg/solvers/beliefs/__init__.py
3
3
0
0
100.00%
src/probnum/linalg/solvers/beliefs/_linear_system_belief.py
70
64
3
3
91.43%
src/probnum/linalg/solvers/information_ops/__init__.py
7
7
0
0
100.00%
src/probnum/linalg/solvers/information_ops/_linear_solver_information_op.py
6
6
0
0
100.00%
src/probnum/linalg/solvers/information_ops/_matvec.py
6
6
0
0
100.00%
src/probnum/linalg/solvers/information_ops/_projected_residual.py
6
6
0
0
100.00%
src/probnum/linalg/solvers/matrixbased.py
301
222
17
62
73.75%
src/probnum/linalg/solvers/policies/__init__.py
7
7
0
0
100.00%
src/probnum/linalg/solvers/policies/_conjugate_gradient.py
35
32
2
1
91.43%
src/probnum/linalg/solvers/policies/_linear_solver_policy.py
7
7
0
0
100.00%
src/probnum/linalg/solvers/policies/_random_unit_vector.py
25
25
0
0
100.00%
src/probnum/linalg/solvers/stopping_criteria/__init__.py
9
9
0
0
100.00%
...obnum/linalg/solvers/stopping_criteria/_linear_solver_stopping_criterion.py
4
4
0
0
100.00%
src/probnum/linalg/solvers/stopping_criteria/_maxiter.py
10
10
0
0
100.00%
src/probnum/linalg/solvers/stopping_criteria/_posterior_contraction.py
13
13
0
0
100.00%
src/probnum/linalg/solvers/stopping_criteria/_residual_norm.py
12
12
0
0
100.00%
src/probnum/linops/__init__.py
17
17
0
0
100.00%
src/probnum/linops/_arithmetic.py
210
192
11
7
91.43%
src/probnum/linops/_arithmetic_fallbacks.py
104
89
3
12
85.58%
src/probnum/linops/_kronecker.py
232
211
9
12
90.95%
src/probnum/linops/_linear_operator.py
555
477
31
47
85.95%
src/probnum/linops/_scaling.py
172
142
18
12
82.56%
src/probnum/linops/_utils.py
13
9
1
3
69.23%
src/probnum/problems/__init__.py
6
6
0
0
100.00%
src/probnum/problems/_problems.py
54
46
2
6
85.19%
src/probnum/problems/zoo/diffeq/__init__.py
3
3
0
0
100.00%
src/probnum/problems/zoo/diffeq/_ivp_examples.py
134
125
7
2
93.28%
src/probnum/problems/zoo/diffeq/_ivp_examples_jax.py
58
53
2
3
91.38%
src/probnum/problems/zoo/filtsmooth/__init__.py
2
2
0
0
100.00%
src/probnum/problems/zoo/filtsmooth/_filtsmooth_problems.py
109
99
9
1
90.83%
src/probnum/problems/zoo/linalg/__init__.py
5
5
0
0
100.00%
src/probnum/problems/zoo/linalg/_random_linear_system.py
17
17
0
0
100.00%
src/probnum/problems/zoo/linalg/_random_spd_matrix.py
32
30
1
1
93.75%
src/probnum/problems/zoo/linalg/_suitesparse_matrix.py
81
68
3
10
83.95%
src/probnum/quad/__init__.py
14
14
0
0
100.00%
src/probnum/quad/_bayesquad.py
33
33
0
0
100.00%
src/probnum/quad/_integration_measures.py
48
48
0
0
100.00%
src/probnum/quad/_quad_typing.py
5
5
0
0
100.00%
src/probnum/quad/_utils.py
30
28
1
1
93.33%
src/probnum/quad/kernel_embeddings/__init__.py
1
1
0
0
100.00%
src/probnum/quad/kernel_embeddings/_expquad_gauss.py
22
22
0
0
100.00%
src/probnum/quad/kernel_embeddings/_expquad_lebesgue.py
13
13
0
0
100.00%
src/probnum/quad/kernel_embeddings/_kernel_embedding.py
28
25
2
1
89.29%
src/probnum/quad/kernel_embeddings/_matern_lebesgue.py
52
52
0
0
100.00%
src/probnum/quad/solvers/__init__.py
3
3
0
0
100.00%
src/probnum/quad/solvers/bayesian_quadrature.py
90
84
3
3
93.33%
src/probnum/quad/solvers/belief_updates/__init__.py
1
1
0
0
100.00%
src/probnum/quad/solvers/belief_updates/_belief_update.py
34
33
0
1
97.06%
src/probnum/quad/solvers/bq_state.py
39
39
0
0
100.00%
src/probnum/quad/solvers/policies/__init__.py
2
2
0
0
100.00%
src/probnum/quad/solvers/policies/_policy.py
8
8
0
0
100.00%
src/probnum/quad/solvers/policies/_random_policy.py
11
11
0
0
100.00%
src/probnum/quad/solvers/stopping_criteria/__init__.py
11
11
0
0
100.00%
src/probnum/quad/solvers/stopping_criteria/_bq_stopping_criterion.py
4
4
0
0
100.00%
src/probnum/quad/solvers/stopping_criteria/_immediate_stop.py
5
5
0
0
100.00%
src/probnum/quad/solvers/stopping_criteria/_integral_variance_tol.py
8
8
0
0
100.00%
src/probnum/quad/solvers/stopping_criteria/_max_nevals.py
8
8
0
0
100.00%
src/probnum/quad/solvers/stopping_criteria/_rel_mean_change.py
10
10
0
0
100.00%
src/probnum/randprocs/__init__.py
7
7
0
0
100.00%
src/probnum/randprocs/_gaussian_process.py
13
13
0
0
100.00%
src/probnum/randprocs/_random_process.py
77
71
2
4
92.21%
src/probnum/randprocs/kernels/__init__.py
18
18
0
0
100.00%
src/probnum/randprocs/kernels/_arithmetic.py
6
6
0
0
100.00%
src/probnum/randprocs/kernels/_arithmetic_fallbacks.py
74
62
3
9
83.78%
src/probnum/randprocs/kernels/_exponentiated_quadratic.py
13
13
0
0
100.00%
src/probnum/randprocs/kernels/_kernel.py
96
88
2
6
91.67%
src/probnum/randprocs/kernels/_linear.py
12
12
0
0
100.00%
src/probnum/randprocs/kernels/_matern.py
34
32
1
1
94.12%
src/probnum/randprocs/kernels/_polynomial.py
12
12
0
0
100.00%
src/probnum/randprocs/kernels/_product_matern.py
44
44
0
0
100.00%
src/probnum/randprocs/kernels/_rational_quadratic.py
16
16
0
0
100.00%
src/probnum/randprocs/kernels/_white_noise.py
17
15
1
1
88.24%
src/probnum/randprocs/markov/__init__.py
7
7
0
0
100.00%
src/probnum/randprocs/markov/_markov.py
40
35
2
3
87.50%
src/probnum/randprocs/markov/_transition.py
63
63
0
0
100.00%
src/probnum/randprocs/markov/continuous/__init__.py
13
13
0
0
100.00%
src/probnum/randprocs/markov/continuous/_diffusions.py
84
78
1
5
92.86%
src/probnum/randprocs/markov/continuous/_linear_sde.py
142
133
5
4
93.66%
src/probnum/randprocs/markov/continuous/_lti_sde.py
72
64
4
4
88.89%
src/probnum/randprocs/markov/continuous/_mfd.py
11
11
0
0
100.00%
src/probnum/randprocs/markov/continuous/_sde.py
31
31
0
0
100.00%
src/probnum/randprocs/markov/discrete/__init__.py
8
8
0
0
100.00%
src/probnum/randprocs/markov/discrete/_condition_state.py
10
10
0
0
100.00%
src/probnum/randprocs/markov/discrete/_linear_gaussian.py
104
104
0
0
100.00%
src/probnum/randprocs/markov/discrete/_lti_gaussian.py
28
20
4
4
71.43%
src/probnum/randprocs/markov/discrete/_nonlinear_gaussian.py
38
38
0
0
100.00%
src/probnum/randprocs/markov/integrator/__init__.py
16
16
0
0
100.00%
src/probnum/randprocs/markov/integrator/_integrator.py
37
33
2
2
89.19%
src/probnum/randprocs/markov/integrator/_ioup.py
64
64
0
0
100.00%
src/probnum/randprocs/markov/integrator/_iwp.py
77
77
0
0
100.00%
src/probnum/randprocs/markov/integrator/_matern.py
67
67
0
0
100.00%
src/probnum/randprocs/markov/integrator/_preconditioner.py
33
33
0
0
100.00%
src/probnum/randprocs/markov/integrator/convert/__init__.py
2
2
0
0
100.00%
src/probnum/randprocs/markov/integrator/convert/_convert.py
9
9
0
0
100.00%
src/probnum/randprocs/markov/utils/__init__.py
2
2
0
0
100.00%
src/probnum/randprocs/markov/utils/_generate_measurements.py
9
9
0
0
100.00%
src/probnum/randprocs/mean_fns.py
6
6
0
0
100.00%
src/probnum/randvars/__init__.py
19
19
0
0
100.00%
src/probnum/randvars/_arithmetic.py
146
135
4
7
92.47%
src/probnum/randvars/_categorical.py
33
33
0
0
100.00%
src/probnum/randvars/_constant.py
47
42
0
5
89.36%
src/probnum/randvars/_normal.py
222
183
10
29
82.43%
src/probnum/randvars/_random_variable.py
290
185
10
95
63.79%
src/probnum/randvars/_randomvariablelist.py
60
52
4
4
86.67%
src/probnum/randvars/_scipy_stats.py
86
61
10
15
70.93%
src/probnum/randvars/_utils.py
17
15
1
1
88.24%
src/probnum/typing.py
21
21
0
0
100.00%
src/probnum/utils/__init__.py
3
3
0
0
100.00%
src/probnum/utils/argutils.py
25
25
0
0
100.00%
src/probnum/utils/arrayutils.py
24
9
1
14
37.50%
src/probnum/utils/linalg/__init__.py
4
4
0
0
100.00%
src/probnum/utils/linalg/_cholesky_updates.py
20
20
0
0
100.00%
src/probnum/utils/linalg/_inner_product.py
18
16
1
1
88.89%
src/probnum/utils/linalg/_orthogonalize.py
40
36
4
0
90.00%