Compare 3ae7949 ... +0 ... 58c3023

Coverage Reach
randprocs/markov/continuous/_linear_sde.py randprocs/markov/continuous/_diffusions.py randprocs/markov/continuous/_lti_sde.py randprocs/markov/continuous/_sde.py randprocs/markov/continuous/__init__.py randprocs/markov/continuous/_mfd.py randprocs/markov/integrator/_iwp.py randprocs/markov/integrator/_matern.py randprocs/markov/integrator/_ioup.py randprocs/markov/integrator/_integrator.py randprocs/markov/integrator/_preconditioner.py randprocs/markov/integrator/__init__.py randprocs/markov/integrator/convert/_convert.py randprocs/markov/integrator/convert/__init__.py randprocs/markov/discrete/_linear_gaussian.py randprocs/markov/discrete/_nonlinear_gaussian.py randprocs/markov/discrete/_lti_gaussian.py randprocs/markov/discrete/_condition_state.py randprocs/markov/discrete/__init__.py randprocs/markov/_transition.py randprocs/markov/_markov_process.py randprocs/markov/utils/_generate_measurements.py randprocs/markov/utils/__init__.py randprocs/markov/__init__.py randprocs/kernels/_kernel.py randprocs/kernels/_matern.py randprocs/kernels/__init__.py randprocs/kernels/_rational_quadratic.py randprocs/kernels/_white_noise.py randprocs/kernels/_exponentiated_quadratic.py randprocs/kernels/_polynomial.py randprocs/kernels/_linear.py randprocs/_random_process.py randprocs/_gaussian_process.py randprocs/__init__.py linops/_linear_operator.py linops/_arithmetic.py linops/_kronecker.py linops/_scaling.py linops/_arithmetic_fallbacks.py linops/__init__.py linops/_utils.py randvars/_random_variable.py randvars/_normal.py randvars/_arithmetic.py randvars/_scipy_stats.py randvars/_randomvariablelist.py randvars/_constant.py randvars/_categorical.py randvars/__init__.py randvars/_utils.py diffeq/odefilter/initialization_routines/_runge_kutta.py diffeq/odefilter/initialization_routines/_taylor_mode.py diffeq/odefilter/initialization_routines/_initialization_routine.py diffeq/odefilter/initialization_routines/__init__.py diffeq/odefilter/information_operators/_ode_residual.py diffeq/odefilter/information_operators/_information_operator.py diffeq/odefilter/information_operators/_approx_information_operator.py diffeq/odefilter/information_operators/__init__.py diffeq/odefilter/_odefilter.py diffeq/odefilter/utils/_problem_utils.py diffeq/odefilter/utils/__init__.py diffeq/odefilter/approx_strategies/_ek.py diffeq/odefilter/approx_strategies/__init__.py diffeq/odefilter/approx_strategies/_approx_strategy.py diffeq/odefilter/_odefilter_solution.py diffeq/odefilter/__init__.py diffeq/perturbed/step/_perturbedstepsolver.py diffeq/perturbed/step/_perturbedstepsolution.py diffeq/perturbed/step/_perturbation_functions.py diffeq/perturbed/step/__init__.py diffeq/perturbed/scipy_wrapper/_wrapped_scipy_solver.py diffeq/perturbed/scipy_wrapper/_wrapped_scipy_odesolution.py diffeq/perturbed/scipy_wrapper/__init__.py diffeq/perturbed/__init__.py diffeq/_odesolver.py diffeq/stepsize/_steprule.py diffeq/stepsize/__init__.py diffeq/stepsize/_propose_firststep.py diffeq/_perturbsolve_ivp.py diffeq/callbacks/_discrete_callback.py diffeq/callbacks/_callback.py diffeq/callbacks/__init__.py diffeq/_probsolve_ivp.py diffeq/_odesolution.py diffeq/_odesolver_state.py diffeq/_utils.py diffeq/__init__.py linalg/solvers/matrixbased.py linalg/solvers/belief_updates/matrix_based/_matrix_based_linear_belief_update.py linalg/solvers/belief_updates/matrix_based/_symmetric_matrix_based_linear_belief_update.py linalg/solvers/belief_updates/matrix_based/__init__.py linalg/solvers/belief_updates/solution_based/_solution_based_proj_rhs_belief_update.py linalg/solvers/belief_updates/solution_based/__init__.py linalg/solvers/belief_updates/_linear_solver_belief_update.py linalg/solvers/belief_updates/__init__.py linalg/solvers/beliefs/_linear_system_belief.py linalg/solvers/beliefs/__init__.py linalg/solvers/_state.py linalg/solvers/stopping_criteria/_posterior_contraction.py linalg/solvers/stopping_criteria/_residual_norm.py linalg/solvers/stopping_criteria/_maxiter.py linalg/solvers/stopping_criteria/__init__.py linalg/solvers/stopping_criteria/_linear_solver_stopping_criterion.py linalg/solvers/_probabilistic_linear_solver.py linalg/solvers/policies/_random_unit_vector.py linalg/solvers/policies/_conjugate_gradient.py linalg/solvers/policies/__init__.py linalg/solvers/policies/_linear_solver_policy.py linalg/solvers/information_ops/__init__.py linalg/solvers/information_ops/_linear_solver_information_op.py linalg/solvers/information_ops/_matvec.py linalg/solvers/information_ops/_projected_rhs.py linalg/solvers/__init__.py linalg/_problinsolve.py linalg/__init__.py linalg/_bayescg.py filtsmooth/gaussian/approx/_extendedkalman.py filtsmooth/gaussian/approx/_unscentedkalman.py filtsmooth/gaussian/approx/_unscentedtransform.py filtsmooth/gaussian/approx/__init__.py filtsmooth/gaussian/_kalmanposterior.py filtsmooth/gaussian/_kalman.py filtsmooth/gaussian/__init__.py filtsmooth/particle/_particle_filter.py filtsmooth/particle/_importance_distributions.py filtsmooth/particle/_particle_filter_posterior.py filtsmooth/particle/__init__.py filtsmooth/optim/_iterated_component.py filtsmooth/optim/_stopping_criterion.py filtsmooth/optim/_state_space_optimizer.py filtsmooth/optim/_gauss_newton.py filtsmooth/optim/__init__.py filtsmooth/_timeseriesposterior.py filtsmooth/utils/_merge_regression_problems.py filtsmooth/utils/__init__.py filtsmooth/_kalman_filter_smoother.py filtsmooth/__init__.py filtsmooth/_bayesfiltsmooth.py problems/zoo/diffeq/_ivp_examples.py problems/zoo/diffeq/_ivp_examples_jax.py problems/zoo/diffeq/__init__.py problems/zoo/linalg/_suitesparse_matrix.py problems/zoo/linalg/_random_spd_matrix.py problems/zoo/linalg/_random_linear_system.py problems/zoo/linalg/__init__.py problems/zoo/filtsmooth/_filtsmooth_problems.py problems/zoo/filtsmooth/__init__.py problems/_problems.py problems/__init__.py quad/solvers/bayesian_quadrature.py quad/solvers/stopping_criteria/_rel_mean_change.py quad/solvers/stopping_criteria/__init__.py quad/solvers/stopping_criteria/_max_nevals.py quad/solvers/stopping_criteria/_integral_variance_tol.py quad/solvers/stopping_criteria/_bq_stopping_criterion.py quad/solvers/bq_state.py quad/solvers/belief_updates/_belief_update.py quad/solvers/belief_updates/__init__.py quad/solvers/policies/_policy.py quad/solvers/policies/__init__.py quad/solvers/__init__.py quad/_integration_measures.py quad/kernel_embeddings/_kernel_embedding.py quad/kernel_embeddings/_expquad_gauss.py quad/kernel_embeddings/_expquad_lebesgue.py quad/kernel_embeddings/__init__.py quad/_bayesquad.py quad/__init__.py utils/argutils.py utils/arrayutils.py utils/linalg/_cholesky_updates.py utils/linalg/__init__.py utils/__init__.py _config.py _pnmethod/_stopping_criterion.py _pnmethod/_probabilistic_numerical_method.py _pnmethod/__init__.py typing.py __init__.py conftest.py

No flags found

Use flags to group coverage reports by test type, project and/or folders.
Then setup custom commit statuses and notifications for each flag.

e.g., #unittest #integration

#production #enterprise

#frontend #backend

Learn more about Codecov Flags here.


@@ -45,7 +45,8 @@
Loading
45 45
        Returns
46 46
        -------
47 47
        updated_belief :
48 -
            Gaussian integral belief after conditioning on the new nodes and evaluations.
48 +
            Gaussian integral belief after conditioning on the new nodes and
49 +
            evaluations.
49 50
        updated_state :
50 51
            Updated version of ``bq_state`` that contains all updated quantities.
51 52
        """
@@ -110,7 +111,7 @@
Loading
110 111
111 112
        Returns
112 113
        -------
113 -
        x:
114 +
        x :
114 115
            The solution to the linear system :math:`K x = b`
115 116
        """
116 117
        jitter = 1.0e-6

@@ -9,7 +9,7 @@
Loading
9 9
from probnum.randprocs.kernels import Kernel
10 10
from probnum.randvars import Normal
11 11
12 -
# pylint: disable=too-few-public-methods, too-many-instance-attributes, too-many-arguments
12 +
# pylint: disable=too-few-public-methods,too-many-instance-attributes,too-many-arguments
13 13
14 14
15 15
class BQInfo:
@@ -128,6 +128,11 @@
Loading
128 128
            The Gram matrix of the given nodes.
129 129
        kernel_means :
130 130
            The kernel means at the given nodes.
131 +
132 +
        Returns
133 +
        -------
134 +
        bq_state :
135 +
            An instance of this class.
131 136
        """
132 137
        return cls(
133 138
            measure=prev_state.measure,

@@ -10,7 +10,8 @@
Loading
10 10
class BQStoppingCriterion(StoppingCriterion):
11 11
    r"""Stopping criterion of a Bayesian quadrature method.
12 12
13 -
    Checks whether quantities tracked by the :class:`~probnum.quad.solvers.BQState` meet a desired terminal condition.
13 +
    Checks whether quantities tracked by the :class:`~probnum.quad.solvers.BQState`
14 +
    meet a desired terminal condition.
14 15
15 16
    See Also
16 17
    --------

@@ -45,7 +45,8 @@
Loading
45 45
    ----------
46 46
    sample_func :
47 47
        The sample function. Needs to have the following interface:
48 -
        `sample_func(batch_size: int, rng: np.random.Generator)` and return an array of shape (batch_size, n_dim).
48 +
        `sample_func(batch_size: int, rng: np.random.Generator)` and return an array of
49 +
        shape (batch_size, n_dim).
49 50
    batch_size :
50 51
        Size of batch of nodes when calling the policy once.
51 52
    """

@@ -8,8 +8,6 @@
Loading
8 8
from probnum.quad._integration_measures import GaussianMeasure
9 9
from probnum.randprocs.kernels import ExpQuad
10 10
11 -
# pylint: disable=invalid-name
12 -
13 11
14 12
def _kernel_mean_expquad_gauss(
15 13
    x: np.ndarray, kernel: ExpQuad, measure: GaussianMeasure
@@ -20,17 +18,18 @@
Loading
20 18
    Parameters
21 19
    ----------
22 20
    x :
23 -
        *shape=(n_eval, input_dim)* -- n_eval locations where to evaluate the kernel mean.
21 +
        *shape=(n_eval, input_dim)* -- n_eval locations where to evaluate the kernel
22 +
        mean.
24 23
    kernel :
25 24
        Instance of an ExpQuad kernel.
26 25
    measure :
27 26
        Instance of a GaussianMeasure.
28 27
29 28
    Returns
30 29
    -------
31 -
    k_mean :
30 +
    kernel_mean :
32 31
        *shape (n_eval,)* -- The kernel integrated w.r.t. its first argument,
33 -
        evaluated at locations x.
32 +
        evaluated at locations ``x``.
34 33
    """
35 34
    input_dim = kernel.input_dim
36 35
@@ -66,7 +65,7 @@
Loading
66 65
67 66
    Returns
68 67
    -------
69 -
    k_var :
68 +
    kernel_variance :
70 69
        The kernel integrated w.r.t. both arguments.
71 70
    """
72 71
    input_dim = kernel.input_dim

Click to load this diff.
Loading diff...

Click to load this diff.
Loading diff...

Click to load this diff.
Loading diff...

Click to load this diff.
Loading diff...

Click to load this diff.
Loading diff...

Everything is accounted for!

No changes detected that need to be reviewed.
What changes does Codecov check for?
Lines, not adjusted in diff, that have changed coverage data.
Files that introduced coverage data that had none before.
Files that have missing coverage data that once were tracked.
Files Coverage
src/probnum +<.01% 89.40%
Project Totals (181 files) 89.40%
Loading