1
|
|
/* -*- c -*- */
|
2
|
|
|
3
|
|
#define _UMATHMODULE
|
4
|
|
#define _MULTIARRAYMODULE
|
5
|
|
#define NPY_NO_DEPRECATED_API NPY_API_VERSION
|
6
|
|
|
7
|
|
#include "Python.h"
|
8
|
|
|
9
|
|
#include "npy_config.h"
|
10
|
|
#include "numpy/npy_common.h"
|
11
|
|
#include "numpy/arrayobject.h"
|
12
|
|
#include "numpy/ufuncobject.h"
|
13
|
|
#include "numpy/npy_math.h"
|
14
|
|
#include "numpy/halffloat.h"
|
15
|
|
#include "lowlevel_strided_loops.h"
|
16
|
|
|
17
|
|
#include "npy_pycompat.h"
|
18
|
|
|
19
|
|
#include "ufunc_object.h"
|
20
|
|
|
21
|
|
#include <string.h> /* for memchr */
|
22
|
|
|
23
|
|
/*
|
24
|
|
* cutoff blocksize for pairwise summation
|
25
|
|
* decreasing it decreases errors slightly as more pairs are summed but
|
26
|
|
* also lowers performance, as the inner loop is unrolled eight times it is
|
27
|
|
* effectively 16
|
28
|
|
*/
|
29
|
|
#define PW_BLOCKSIZE 128
|
30
|
|
|
31
|
|
|
32
|
|
/*
|
33
|
|
* largest simd vector size in bytes numpy supports
|
34
|
|
* it is currently a extremely large value as it is only used for memory
|
35
|
|
* overlap checks
|
36
|
|
*/
|
37
|
|
#ifndef NPY_MAX_SIMD_SIZE
|
38
|
|
#define NPY_MAX_SIMD_SIZE 1024
|
39
|
|
#endif
|
40
|
|
|
41
|
|
/** Provides the various *_LOOP macros */
|
42
|
|
#include "fast_loop_macros.h"
|
43
|
|
|
44
|
|
/*
|
45
|
|
* include vectorized functions and dispatchers
|
46
|
|
* this file is safe to include also for generic builds
|
47
|
|
* platform specific instructions are either masked via the proprocessor or
|
48
|
|
* runtime detected
|
49
|
|
*/
|
50
|
|
#include "simd.inc"
|
51
|
|
|
52
|
|
/******************************************************************************
|
53
|
|
** GENERIC FLOAT LOOPS **
|
54
|
|
*****************************************************************************/
|
55
|
|
|
56
|
|
/* direct loops using a suitable callback */
|
57
|
|
|
58
|
|
/**begin repeat
|
59
|
|
* #c = e, f, d, g#
|
60
|
|
* #type = npy_half, npy_float, npy_double, npy_longdouble#
|
61
|
|
**/
|
62
|
|
|
63
|
|
/*UFUNC_API*/
|
64
|
|
NPY_NO_EXPORT void
|
65
|
1
|
PyUFunc_@c@_@c@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)
|
66
|
|
{
|
67
|
|
typedef @type@ func_type(@type@);
|
68
|
1
|
func_type *f = (func_type *)func;
|
69
|
1
|
UNARY_LOOP {
|
70
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
71
|
1
|
*(@type@ *)op1 = f(in1);
|
72
|
|
}
|
73
|
1
|
}
|
74
|
|
|
75
|
|
/*UFUNC_API*/
|
76
|
|
NPY_NO_EXPORT void
|
77
|
1
|
PyUFunc_@c@@c@_@c@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)
|
78
|
|
{
|
79
|
|
typedef @type@ func_type(@type@, @type@);
|
80
|
1
|
func_type *f = (func_type *)func;
|
81
|
1
|
BINARY_LOOP {
|
82
|
1
|
@type@ in1 = *(@type@ *)ip1;
|
83
|
1
|
@type@ in2 = *(@type@ *)ip2;
|
84
|
1
|
*(@type@ *)op1 = f(in1, in2);
|
85
|
|
}
|
86
|
1
|
}
|
87
|
|
|
88
|
|
/**end repeat**/
|
89
|
|
|
90
|
|
/* indirect loops with casting */
|
91
|
|
/**begin repeat
|
92
|
|
* #c1 = e, e, f#
|
93
|
|
* #type1 = npy_half, npy_half, npy_float#
|
94
|
|
* #c2 = f, d, d#
|
95
|
|
* #type2 = npy_float, npy_double, npy_double#
|
96
|
|
*
|
97
|
|
* #conv12 = npy_half_to_float, npy_half_to_double, (double)#
|
98
|
|
* #conv21 = npy_float_to_half, npy_double_to_half, (float)#
|
99
|
|
**/
|
100
|
|
|
101
|
|
/*UFUNC_API*/
|
102
|
|
NPY_NO_EXPORT void
|
103
|
1
|
PyUFunc_@c1@_@c1@_As_@c2@_@c2@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)
|
104
|
|
{
|
105
|
|
typedef @type2@ func_type(@type2@);
|
106
|
1
|
func_type *f = (func_type *)func;
|
107
|
1
|
UNARY_LOOP {
|
108
|
1
|
const @type2@ in1 = @conv12@(*(@type1@ *)ip1);
|
109
|
1
|
*(@type1@ *)op1 = @conv21@(f(in1));
|
110
|
|
}
|
111
|
1
|
}
|
112
|
|
/*UFUNC_API*/
|
113
|
|
NPY_NO_EXPORT void
|
114
|
1
|
PyUFunc_@c1@@c1@_@c1@_As_@c2@@c2@_@c2@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)
|
115
|
|
{
|
116
|
|
typedef @type2@ func_type(@type2@, @type2@);
|
117
|
1
|
func_type *f = (func_type *)func;
|
118
|
1
|
BINARY_LOOP {
|
119
|
1
|
const @type2@ in1 = @conv12@(*(@type1@ *)ip1);
|
120
|
1
|
const @type2@ in2 = @conv12@(*(@type1@ *)ip2);
|
121
|
1
|
*(@type1@ *)op1 = @conv21@(f(in1, in2));
|
122
|
|
}
|
123
|
1
|
}
|
124
|
|
|
125
|
|
/**end repeat**/
|
126
|
|
|
127
|
|
/******************************************************************************
|
128
|
|
** GENERIC COMPLEX LOOPS **
|
129
|
|
*****************************************************************************/
|
130
|
|
|
131
|
|
/* direct loops using a suitable callback */
|
132
|
|
/**begin repeat
|
133
|
|
* #c = F, D, G#
|
134
|
|
* #type = npy_cfloat, npy_cdouble, npy_clongdouble#
|
135
|
|
**/
|
136
|
|
|
137
|
|
/*UFUNC_API*/
|
138
|
|
NPY_NO_EXPORT void
|
139
|
1
|
PyUFunc_@c@_@c@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)
|
140
|
|
{
|
141
|
|
typedef void func_type(@type@ *, @type@ *);
|
142
|
1
|
func_type *f = (func_type *)func;
|
143
|
1
|
UNARY_LOOP {
|
144
|
1
|
@type@ in1 = *(@type@ *)ip1;
|
145
|
1
|
@type@ *out = (@type@ *)op1;
|
146
|
1
|
f(&in1, out);
|
147
|
|
}
|
148
|
1
|
}
|
149
|
|
|
150
|
|
/*UFUNC_API*/
|
151
|
|
NPY_NO_EXPORT void
|
152
|
1
|
PyUFunc_@c@@c@_@c@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)
|
153
|
|
{
|
154
|
|
typedef void func_type(@type@ *, @type@ *, @type@ *);
|
155
|
1
|
func_type *f = (func_type *)func;
|
156
|
1
|
BINARY_LOOP {
|
157
|
1
|
@type@ in1 = *(@type@ *)ip1;
|
158
|
1
|
@type@ in2 = *(@type@ *)ip2;
|
159
|
1
|
@type@ *out = (@type@ *)op1;
|
160
|
1
|
f(&in1, &in2, out);
|
161
|
|
}
|
162
|
1
|
}
|
163
|
|
/**end repeat**/
|
164
|
|
|
165
|
|
|
166
|
|
/* indirect loops with casting */
|
167
|
|
/*UFUNC_API*/
|
168
|
|
NPY_NO_EXPORT void
|
169
|
0
|
PyUFunc_F_F_As_D_D(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)
|
170
|
|
{
|
171
|
|
typedef void func_type(npy_cdouble *, npy_cdouble *);
|
172
|
0
|
func_type *f = (func_type *)func;
|
173
|
0
|
UNARY_LOOP {
|
174
|
|
npy_cdouble tmp, out;
|
175
|
0
|
tmp.real = (double)((float *)ip1)[0];
|
176
|
0
|
tmp.imag = (double)((float *)ip1)[1];
|
177
|
0
|
f(&tmp, &out);
|
178
|
0
|
((float *)op1)[0] = (float)out.real;
|
179
|
0
|
((float *)op1)[1] = (float)out.imag;
|
180
|
|
}
|
181
|
0
|
}
|
182
|
|
|
183
|
|
/*UFUNC_API*/
|
184
|
|
NPY_NO_EXPORT void
|
185
|
0
|
PyUFunc_FF_F_As_DD_D(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)
|
186
|
|
{
|
187
|
|
typedef void func_type(npy_cdouble *, npy_cdouble *, npy_cdouble *);
|
188
|
0
|
func_type *f = (func_type *)func;
|
189
|
0
|
BINARY_LOOP {
|
190
|
|
npy_cdouble tmp1, tmp2, out;
|
191
|
0
|
tmp1.real = (double)((float *)ip1)[0];
|
192
|
0
|
tmp1.imag = (double)((float *)ip1)[1];
|
193
|
0
|
tmp2.real = (double)((float *)ip2)[0];
|
194
|
0
|
tmp2.imag = (double)((float *)ip2)[1];
|
195
|
0
|
f(&tmp1, &tmp2, &out);
|
196
|
0
|
((float *)op1)[0] = (float)out.real;
|
197
|
0
|
((float *)op1)[1] = (float)out.imag;
|
198
|
|
}
|
199
|
0
|
}
|
200
|
|
|
201
|
|
|
202
|
|
/******************************************************************************
|
203
|
|
** GENERIC OBJECT lOOPS **
|
204
|
|
*****************************************************************************/
|
205
|
|
|
206
|
|
/*UFUNC_API*/
|
207
|
|
NPY_NO_EXPORT void
|
208
|
1
|
PyUFunc_O_O(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)
|
209
|
|
{
|
210
|
1
|
unaryfunc f = (unaryfunc)func;
|
211
|
1
|
UNARY_LOOP {
|
212
|
1
|
PyObject *in1 = *(PyObject **)ip1;
|
213
|
1
|
PyObject **out = (PyObject **)op1;
|
214
|
1
|
PyObject *ret = f(in1 ? in1 : Py_None);
|
215
|
1
|
if (ret == NULL) {
|
216
|
|
return;
|
217
|
|
}
|
218
|
1
|
Py_XDECREF(*out);
|
219
|
1
|
*out = ret;
|
220
|
|
}
|
221
|
|
}
|
222
|
|
|
223
|
|
/*UFUNC_API*/
|
224
|
|
NPY_NO_EXPORT void
|
225
|
1
|
PyUFunc_O_O_method(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)
|
226
|
|
{
|
227
|
1
|
char *meth = (char *)func;
|
228
|
1
|
UNARY_LOOP {
|
229
|
1
|
PyObject *in1 = *(PyObject **)ip1;
|
230
|
1
|
PyObject **out = (PyObject **)op1;
|
231
|
|
PyObject *ret, *func;
|
232
|
1
|
func = PyObject_GetAttrString(in1 ? in1 : Py_None, meth);
|
233
|
1
|
if (func != NULL && !PyCallable_Check(func)) {
|
234
|
0
|
Py_DECREF(func);
|
235
|
|
func = NULL;
|
236
|
|
}
|
237
|
1
|
if (func == NULL) {
|
238
|
|
PyObject *exc, *val, *tb;
|
239
|
1
|
PyTypeObject *type = in1 ? Py_TYPE(in1) : Py_TYPE(Py_None);
|
240
|
1
|
PyErr_Fetch(&exc, &val, &tb);
|
241
|
1
|
PyErr_Format(PyExc_TypeError,
|
242
|
|
"loop of ufunc does not support argument %d of "
|
243
|
|
"type %s which has no callable %s method",
|
244
|
|
i, type->tp_name, meth);
|
245
|
1
|
npy_PyErr_ChainExceptionsCause(exc, val, tb);
|
246
|
1
|
Py_XDECREF(func);
|
247
|
|
return;
|
248
|
|
}
|
249
|
1
|
ret = PyObject_CallObject(func, NULL);
|
250
|
1
|
Py_DECREF(func);
|
251
|
1
|
if (ret == NULL) {
|
252
|
|
return;
|
253
|
|
}
|
254
|
1
|
Py_XDECREF(*out);
|
255
|
1
|
*out = ret;
|
256
|
|
}
|
257
|
|
}
|
258
|
|
|
259
|
|
/*UFUNC_API*/
|
260
|
|
NPY_NO_EXPORT void
|
261
|
1
|
PyUFunc_OO_O(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)
|
262
|
|
{
|
263
|
1
|
binaryfunc f = (binaryfunc)func;
|
264
|
1
|
BINARY_LOOP {
|
265
|
1
|
PyObject *in1 = *(PyObject **)ip1;
|
266
|
1
|
PyObject *in2 = *(PyObject **)ip2;
|
267
|
1
|
PyObject **out = (PyObject **)op1;
|
268
|
1
|
PyObject *ret = f(in1 ? in1 : Py_None, in2 ? in2 : Py_None);
|
269
|
1
|
if (ret == NULL) {
|
270
|
|
return;
|
271
|
|
}
|
272
|
1
|
Py_XDECREF(*out);
|
273
|
1
|
*out = ret;
|
274
|
|
}
|
275
|
|
}
|
276
|
|
|
277
|
|
NPY_NO_EXPORT void
|
278
|
1
|
PyUFunc_OOO_O(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)
|
279
|
|
{
|
280
|
1
|
ternaryfunc f = (ternaryfunc)func;
|
281
|
1
|
TERNARY_LOOP {
|
282
|
1
|
PyObject *in1 = *(PyObject **)ip1;
|
283
|
1
|
PyObject *in2 = *(PyObject **)ip2;
|
284
|
1
|
PyObject *in3 = *(PyObject **)ip3;
|
285
|
1
|
PyObject **out = (PyObject **)op1;
|
286
|
1
|
PyObject *ret = f(
|
287
|
|
in1 ? in1 : Py_None,
|
288
|
|
in2 ? in2 : Py_None,
|
289
|
|
in3 ? in3 : Py_None
|
290
|
|
);
|
291
|
1
|
if (ret == NULL) {
|
292
|
|
return;
|
293
|
|
}
|
294
|
1
|
Py_XDECREF(*out);
|
295
|
1
|
*out = ret;
|
296
|
|
}
|
297
|
|
}
|
298
|
|
|
299
|
|
/*UFUNC_API*/
|
300
|
|
NPY_NO_EXPORT void
|
301
|
1
|
PyUFunc_OO_O_method(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)
|
302
|
|
{
|
303
|
1
|
char *meth = (char *)func;
|
304
|
1
|
BINARY_LOOP {
|
305
|
1
|
PyObject *in1 = *(PyObject **)ip1;
|
306
|
1
|
PyObject *in2 = *(PyObject **)ip2;
|
307
|
1
|
PyObject **out = (PyObject **)op1;
|
308
|
1
|
PyObject *ret = PyObject_CallMethod(in1 ? in1 : Py_None,
|
309
|
|
meth, "(O)", in2);
|
310
|
1
|
if (ret == NULL) {
|
311
|
|
return;
|
312
|
|
}
|
313
|
1
|
Py_XDECREF(*out);
|
314
|
1
|
*out = ret;
|
315
|
|
}
|
316
|
|
}
|
317
|
|
|
318
|
|
/*
|
319
|
|
* A general-purpose ufunc that deals with general-purpose Python callable.
|
320
|
|
* func is a structure with nin, nout, and a Python callable function
|
321
|
|
*/
|
322
|
|
|
323
|
|
/*UFUNC_API*/
|
324
|
|
NPY_NO_EXPORT void
|
325
|
1
|
PyUFunc_On_Om(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)
|
326
|
|
{
|
327
|
1
|
npy_intp n = dimensions[0];
|
328
|
1
|
PyUFunc_PyFuncData *data = (PyUFunc_PyFuncData *)func;
|
329
|
1
|
int nin = data->nin;
|
330
|
1
|
int nout = data->nout;
|
331
|
1
|
PyObject *tocall = data->callable;
|
332
|
|
char *ptrs[NPY_MAXARGS];
|
333
|
|
PyObject *arglist, *result;
|
334
|
|
PyObject *in, **op;
|
335
|
|
npy_intp i, j, ntot;
|
336
|
|
|
337
|
1
|
ntot = nin+nout;
|
338
|
|
|
339
|
1
|
for(j = 0; j < ntot; j++) {
|
340
|
1
|
ptrs[j] = args[j];
|
341
|
|
}
|
342
|
1
|
for(i = 0; i < n; i++) {
|
343
|
1
|
arglist = PyTuple_New(nin);
|
344
|
1
|
if (arglist == NULL) {
|
345
|
0
|
return;
|
346
|
|
}
|
347
|
1
|
for(j = 0; j < nin; j++) {
|
348
|
1
|
in = *((PyObject **)ptrs[j]);
|
349
|
1
|
if (in == NULL) {
|
350
|
0
|
in = Py_None;
|
351
|
|
}
|
352
|
1
|
PyTuple_SET_ITEM(arglist, j, in);
|
353
|
1
|
Py_INCREF(in);
|
354
|
|
}
|
355
|
1
|
result = PyObject_CallObject(tocall, arglist);
|
356
|
1
|
Py_DECREF(arglist);
|
357
|
1
|
if (result == NULL) {
|
358
|
|
return;
|
359
|
|
}
|
360
|
1
|
if (nout == 0 && result == Py_None) {
|
361
|
|
/* No output expected, no output received, continue */
|
362
|
1
|
Py_DECREF(result);
|
363
|
|
}
|
364
|
1
|
else if (nout == 1) {
|
365
|
|
/* Single output expected, assign and continue */
|
366
|
1
|
op = (PyObject **)ptrs[nin];
|
367
|
1
|
Py_XDECREF(*op);
|
368
|
1
|
*op = result;
|
369
|
|
}
|
370
|
1
|
else if (PyTuple_Check(result) && nout == PyTuple_Size(result)) {
|
371
|
|
/*
|
372
|
|
* Multiple returns match expected number of outputs, assign
|
373
|
|
* and continue. Will also gobble empty tuples if nout == 0.
|
374
|
|
*/
|
375
|
1
|
for(j = 0; j < nout; j++) {
|
376
|
1
|
op = (PyObject **)ptrs[j+nin];
|
377
|
1
|
Py_XDECREF(*op);
|
378
|
1
|
*op = PyTuple_GET_ITEM(result, j);
|
379
|
1
|
Py_INCREF(*op);
|
380
|
|
}
|
381
|
1
|
Py_DECREF(result);
|
382
|
|
}
|
383
|
|
else {
|
384
|
|
/* Mismatch between returns and expected outputs, exit */
|
385
|
0
|
Py_DECREF(result);
|
386
|
|
return;
|
387
|
|
}
|
388
|
1
|
for(j = 0; j < ntot; j++) {
|
389
|
1
|
ptrs[j] += steps[j];
|
390
|
|
}
|
391
|
|
}
|
392
|
|
}
|
393
|
|
|
394
|
|
/*
|
395
|
|
*****************************************************************************
|
396
|
|
** BOOLEAN LOOPS **
|
397
|
|
*****************************************************************************
|
398
|
|
*/
|
399
|
|
|
400
|
|
/**begin repeat
|
401
|
|
* #kind = equal, not_equal, greater, greater_equal, less, less_equal#
|
402
|
|
* #OP = ==, !=, >, >=, <, <=#
|
403
|
|
**/
|
404
|
|
|
405
|
|
NPY_NO_EXPORT void
|
406
|
1
|
BOOL_@kind@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
407
|
|
{
|
408
|
1
|
BINARY_LOOP {
|
409
|
1
|
npy_bool in1 = *((npy_bool *)ip1) != 0;
|
410
|
1
|
npy_bool in2 = *((npy_bool *)ip2) != 0;
|
411
|
1
|
*((npy_bool *)op1)= in1 @OP@ in2;
|
412
|
|
}
|
413
|
1
|
}
|
414
|
|
/**end repeat**/
|
415
|
|
|
416
|
|
|
417
|
|
/**begin repeat
|
418
|
|
* #kind = logical_and, logical_or#
|
419
|
|
* #OP = &&, ||#
|
420
|
|
* #SC = ==, !=#
|
421
|
|
* #and = 1, 0#
|
422
|
|
**/
|
423
|
|
|
424
|
|
NPY_NO_EXPORT void
|
425
|
1
|
BOOL_@kind@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
426
|
|
{
|
427
|
1
|
if(IS_BINARY_REDUCE) {
|
428
|
|
#ifdef NPY_HAVE_SSE2_INTRINSICS
|
429
|
|
/*
|
430
|
|
* stick with our variant for more reliable performance, only known
|
431
|
|
* platform which outperforms it by ~20% is an i7 with glibc 2.17
|
432
|
|
*/
|
433
|
1
|
if (run_reduce_simd_@kind@_BOOL(args, dimensions, steps)) {
|
434
|
|
return;
|
435
|
|
}
|
436
|
|
#else
|
437
|
|
/* for now only use libc on 32-bit/non-x86 */
|
438
|
|
if (steps[1] == 1) {
|
439
|
|
npy_bool * op = (npy_bool *)args[0];
|
440
|
|
#if @and@
|
441
|
|
/* np.all(), search for a zero (false) */
|
442
|
|
if (*op) {
|
443
|
|
*op = memchr(args[1], 0, dimensions[0]) == NULL;
|
444
|
|
}
|
445
|
|
#else
|
446
|
|
/*
|
447
|
|
* np.any(), search for a non-zero (true) via comparing against
|
448
|
|
* zero blocks, memcmp is faster than memchr on SSE4 machines
|
449
|
|
* with glibc >= 2.12 and memchr can only check for equal 1
|
450
|
|
*/
|
451
|
|
static const npy_bool zero[4096]; /* zero by C standard */
|
452
|
|
npy_uintp i, n = dimensions[0];
|
453
|
|
|
454
|
|
for (i = 0; !*op && i < n - (n % sizeof(zero)); i += sizeof(zero)) {
|
455
|
|
*op = memcmp(&args[1][i], zero, sizeof(zero)) != 0;
|
456
|
|
}
|
457
|
|
if (!*op && n - i > 0) {
|
458
|
|
*op = memcmp(&args[1][i], zero, n - i) != 0;
|
459
|
|
}
|
460
|
|
#endif
|
461
|
|
return;
|
462
|
|
}
|
463
|
|
#endif
|
464
|
|
else {
|
465
|
1
|
BINARY_REDUCE_LOOP(npy_bool) {
|
466
|
1
|
const npy_bool in2 = *(npy_bool *)ip2;
|
467
|
1
|
io1 = io1 @OP@ in2;
|
468
|
1
|
if (io1 @SC@ 0) {
|
469
|
|
break;
|
470
|
|
}
|
471
|
|
}
|
472
|
1
|
*((npy_bool *)iop1) = io1;
|
473
|
|
}
|
474
|
|
}
|
475
|
|
else {
|
476
|
1
|
if (run_binary_simd_@kind@_BOOL(args, dimensions, steps)) {
|
477
|
|
return;
|
478
|
|
}
|
479
|
|
else {
|
480
|
1
|
BINARY_LOOP {
|
481
|
1
|
const npy_bool in1 = *(npy_bool *)ip1;
|
482
|
1
|
const npy_bool in2 = *(npy_bool *)ip2;
|
483
|
1
|
*((npy_bool *)op1) = in1 @OP@ in2;
|
484
|
|
}
|
485
|
|
}
|
486
|
|
}
|
487
|
|
}
|
488
|
|
/**end repeat**/
|
489
|
|
|
490
|
|
/**begin repeat
|
491
|
|
* #kind = absolute, logical_not#
|
492
|
|
* #OP = !=, ==#
|
493
|
|
**/
|
494
|
|
NPY_NO_EXPORT void
|
495
|
1
|
BOOL_@kind@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
496
|
|
{
|
497
|
1
|
if (run_unary_simd_@kind@_BOOL(args, dimensions, steps)) {
|
498
|
|
return;
|
499
|
|
}
|
500
|
|
else {
|
501
|
1
|
UNARY_LOOP {
|
502
|
1
|
npy_bool in1 = *(npy_bool *)ip1;
|
503
|
1
|
*((npy_bool *)op1) = in1 @OP@ 0;
|
504
|
|
}
|
505
|
|
}
|
506
|
|
}
|
507
|
|
/**end repeat**/
|
508
|
|
|
509
|
|
NPY_NO_EXPORT void
|
510
|
0
|
BOOL__ones_like(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(data))
|
511
|
|
{
|
512
|
0
|
OUTPUT_LOOP {
|
513
|
0
|
*((npy_bool *)op1) = 1;
|
514
|
|
}
|
515
|
0
|
}
|
516
|
|
|
517
|
|
|
518
|
|
/**begin repeat
|
519
|
|
* #kind = isnan, isinf, isfinite#
|
520
|
|
* #func = npy_isnan, npy_isinf, npy_isfinite#
|
521
|
|
* #val = NPY_FALSE, NPY_FALSE, NPY_TRUE#
|
522
|
|
**/
|
523
|
|
NPY_NO_EXPORT void
|
524
|
1
|
BOOL_@kind@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
525
|
|
{
|
526
|
|
/*
|
527
|
|
* The (void)in; suppresses an unused variable warning raised by gcc and allows
|
528
|
|
* us to re-use this macro even though we do not depend on in
|
529
|
|
*/
|
530
|
1
|
UNARY_LOOP_FAST(npy_bool, npy_bool, (void)in; *out = @val@);
|
531
|
1
|
}
|
532
|
|
|
533
|
|
/**end repeat**/
|
534
|
|
|
535
|
|
/*
|
536
|
|
*****************************************************************************
|
537
|
|
** INTEGER LOOPS
|
538
|
|
*****************************************************************************
|
539
|
|
*/
|
540
|
|
|
541
|
|
/**begin repeat
|
542
|
|
* #TYPE = BYTE, UBYTE, SHORT, USHORT, INT, UINT,
|
543
|
|
* LONG, ULONG, LONGLONG, ULONGLONG#
|
544
|
|
* #type = npy_byte, npy_ubyte, npy_short, npy_ushort, npy_int, npy_uint,
|
545
|
|
* npy_long, npy_ulong, npy_longlong, npy_ulonglong#
|
546
|
|
* #ftype = npy_float, npy_float, npy_float, npy_float, npy_double, npy_double,
|
547
|
|
* npy_double, npy_double, npy_double, npy_double#
|
548
|
|
* #SIGNED = 1, 0, 1, 0, 1, 0, 1, 0, 1, 0#
|
549
|
|
* #c = hh,uhh,h,uh,,u,l,ul,ll,ull#
|
550
|
|
*/
|
551
|
|
|
552
|
|
#define @TYPE@_floor_divide @TYPE@_divide
|
553
|
|
#define @TYPE@_fmax @TYPE@_maximum
|
554
|
|
#define @TYPE@_fmin @TYPE@_minimum
|
555
|
|
|
556
|
|
NPY_NO_EXPORT void
|
557
|
0
|
@TYPE@__ones_like(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(data))
|
558
|
|
{
|
559
|
0
|
OUTPUT_LOOP {
|
560
|
0
|
*((@type@ *)op1) = 1;
|
561
|
|
}
|
562
|
0
|
}
|
563
|
|
|
564
|
|
NPY_NO_EXPORT void
|
565
|
1
|
@TYPE@_positive(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
566
|
|
{
|
567
|
1
|
UNARY_LOOP_FAST(@type@, @type@, *out = +in);
|
568
|
1
|
}
|
569
|
|
|
570
|
|
/**begin repeat1
|
571
|
|
* #isa = , _avx2#
|
572
|
|
* #ISA = , AVX2#
|
573
|
|
* #CHK = 1, HAVE_ATTRIBUTE_TARGET_AVX2#
|
574
|
|
* #ATTR = , NPY_GCC_TARGET_AVX2#
|
575
|
|
*/
|
576
|
|
|
577
|
|
#if @CHK@
|
578
|
|
NPY_NO_EXPORT NPY_GCC_OPT_3 @ATTR@ void
|
579
|
1
|
@TYPE@_square@isa@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(data))
|
580
|
|
{
|
581
|
1
|
UNARY_LOOP_FAST(@type@, @type@, *out = in * in);
|
582
|
1
|
}
|
583
|
|
#endif
|
584
|
|
|
585
|
|
#if @CHK@
|
586
|
|
NPY_NO_EXPORT NPY_GCC_OPT_3 @ATTR@ void
|
587
|
1
|
@TYPE@_reciprocal@isa@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(data))
|
588
|
|
{
|
589
|
1
|
UNARY_LOOP_FAST(@type@, @type@, *out = 1.0 / in);
|
590
|
1
|
}
|
591
|
|
#endif
|
592
|
|
|
593
|
|
#if @CHK@
|
594
|
|
NPY_NO_EXPORT NPY_GCC_OPT_3 @ATTR@ void
|
595
|
1
|
@TYPE@_conjugate@isa@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
596
|
|
{
|
597
|
1
|
UNARY_LOOP_FAST(@type@, @type@, *out = in);
|
598
|
1
|
}
|
599
|
|
#endif
|
600
|
|
|
601
|
|
#if @CHK@
|
602
|
|
NPY_NO_EXPORT NPY_GCC_OPT_3 @ATTR@ void
|
603
|
1
|
@TYPE@_negative@isa@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
604
|
|
{
|
605
|
1
|
UNARY_LOOP_FAST(@type@, @type@, *out = -in);
|
606
|
1
|
}
|
607
|
|
#endif
|
608
|
|
|
609
|
|
#if @CHK@
|
610
|
|
NPY_NO_EXPORT NPY_GCC_OPT_3 @ATTR@ void
|
611
|
1
|
@TYPE@_logical_not@isa@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
612
|
|
{
|
613
|
1
|
UNARY_LOOP_FAST(@type@, npy_bool, *out = !in);
|
614
|
1
|
}
|
615
|
|
#endif
|
616
|
|
|
617
|
|
#if @CHK@
|
618
|
|
NPY_NO_EXPORT NPY_GCC_OPT_3 @ATTR@ void
|
619
|
1
|
@TYPE@_invert@isa@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
620
|
|
{
|
621
|
1
|
UNARY_LOOP_FAST(@type@, @type@, *out = ~in);
|
622
|
1
|
}
|
623
|
|
#endif
|
624
|
|
|
625
|
|
/**begin repeat2
|
626
|
|
* Arithmetic
|
627
|
|
* #kind = add, subtract, multiply, bitwise_and, bitwise_or, bitwise_xor#
|
628
|
|
* #OP = +, -, *, &, |, ^#
|
629
|
|
*/
|
630
|
|
|
631
|
|
#if @CHK@
|
632
|
|
NPY_NO_EXPORT NPY_GCC_OPT_3 @ATTR@ void
|
633
|
1
|
@TYPE@_@kind@@isa@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
634
|
|
{
|
635
|
1
|
if (IS_BINARY_REDUCE) {
|
636
|
1
|
BINARY_REDUCE_LOOP(@type@) {
|
637
|
1
|
io1 @OP@= *(@type@ *)ip2;
|
638
|
|
}
|
639
|
1
|
*((@type@ *)iop1) = io1;
|
640
|
|
}
|
641
|
|
else {
|
642
|
1
|
BINARY_LOOP_FAST(@type@, @type@, *out = in1 @OP@ in2);
|
643
|
|
}
|
644
|
1
|
}
|
645
|
|
#endif
|
646
|
|
|
647
|
|
/**end repeat2**/
|
648
|
|
|
649
|
|
/*
|
650
|
|
* Arithmetic bit shift operations.
|
651
|
|
*
|
652
|
|
* Intel hardware masks bit shift values, so large shifts wrap around
|
653
|
|
* and can produce surprising results. The special handling ensures that
|
654
|
|
* behavior is independent of compiler or hardware.
|
655
|
|
* TODO: We could implement consistent behavior for negative shifts,
|
656
|
|
* which is undefined in C.
|
657
|
|
*/
|
658
|
|
|
659
|
|
#define INT_left_shift_needs_clear_floatstatus
|
660
|
|
#define UINT_left_shift_needs_clear_floatstatus
|
661
|
|
|
662
|
|
NPY_NO_EXPORT NPY_GCC_OPT_3 void
|
663
|
1
|
@TYPE@_left_shift@isa@(char **args, npy_intp const *dimensions, npy_intp const *steps,
|
664
|
|
void *NPY_UNUSED(func))
|
665
|
|
{
|
666
|
1
|
BINARY_LOOP_FAST(@type@, @type@, *out = npy_lshift@c@(in1, in2));
|
667
|
|
|
668
|
|
#ifdef @TYPE@_left_shift_needs_clear_floatstatus
|
669
|
|
// For some reason, our macOS CI sets an "invalid" flag here, but only
|
670
|
|
// for some types.
|
671
|
1
|
npy_clear_floatstatus_barrier((char*)dimensions);
|
672
|
|
#endif
|
673
|
1
|
}
|
674
|
|
|
675
|
|
#undef INT_left_shift_needs_clear_floatstatus
|
676
|
|
#undef UINT_left_shift_needs_clear_floatstatus
|
677
|
|
|
678
|
|
NPY_NO_EXPORT
|
679
|
|
#ifndef NPY_DO_NOT_OPTIMIZE_@TYPE@_right_shift
|
680
|
|
NPY_GCC_OPT_3
|
681
|
|
#endif
|
682
|
|
void
|
683
|
1
|
@TYPE@_right_shift@isa@(char **args, npy_intp const *dimensions, npy_intp const *steps,
|
684
|
|
void *NPY_UNUSED(func))
|
685
|
|
{
|
686
|
1
|
BINARY_LOOP_FAST(@type@, @type@, *out = npy_rshift@c@(in1, in2));
|
687
|
1
|
}
|
688
|
|
|
689
|
|
|
690
|
|
/**begin repeat2
|
691
|
|
* #kind = equal, not_equal, greater, greater_equal, less, less_equal,
|
692
|
|
* logical_and, logical_or#
|
693
|
|
* #OP = ==, !=, >, >=, <, <=, &&, ||#
|
694
|
|
*/
|
695
|
|
|
696
|
|
#if @CHK@
|
697
|
|
NPY_NO_EXPORT NPY_GCC_OPT_3 @ATTR@ void
|
698
|
1
|
@TYPE@_@kind@@isa@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
699
|
|
{
|
700
|
|
/*
|
701
|
|
* gcc vectorization of this is not good (PR60575) but manual integer
|
702
|
|
* vectorization is too tedious to be worthwhile
|
703
|
|
*/
|
704
|
1
|
BINARY_LOOP_FAST(@type@, npy_bool, *out = in1 @OP@ in2);
|
705
|
1
|
}
|
706
|
|
#endif
|
707
|
|
|
708
|
|
/**end repeat2**/
|
709
|
|
|
710
|
|
#if @CHK@
|
711
|
|
NPY_NO_EXPORT NPY_GCC_OPT_3 @ATTR@ void
|
712
|
1
|
@TYPE@_logical_xor@isa@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
713
|
|
{
|
714
|
1
|
BINARY_LOOP {
|
715
|
1
|
const int t1 = !!*(@type@ *)ip1;
|
716
|
1
|
const int t2 = !!*(@type@ *)ip2;
|
717
|
1
|
*((npy_bool *)op1) = (t1 != t2);
|
718
|
|
}
|
719
|
1
|
}
|
720
|
|
#endif
|
721
|
|
|
722
|
|
/**end repeat1**/
|
723
|
|
|
724
|
|
/**begin repeat1
|
725
|
|
* #kind = maximum, minimum#
|
726
|
|
* #OP = >, <#
|
727
|
|
**/
|
728
|
|
|
729
|
|
NPY_NO_EXPORT void
|
730
|
1
|
@TYPE@_@kind@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
731
|
|
{
|
732
|
1
|
if (IS_BINARY_REDUCE) {
|
733
|
1
|
BINARY_REDUCE_LOOP(@type@) {
|
734
|
1
|
const @type@ in2 = *(@type@ *)ip2;
|
735
|
1
|
io1 = (io1 @OP@ in2) ? io1 : in2;
|
736
|
|
}
|
737
|
1
|
*((@type@ *)iop1) = io1;
|
738
|
|
}
|
739
|
|
else {
|
740
|
1
|
BINARY_LOOP {
|
741
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
742
|
1
|
const @type@ in2 = *(@type@ *)ip2;
|
743
|
1
|
*((@type@ *)op1) = (in1 @OP@ in2) ? in1 : in2;
|
744
|
|
}
|
745
|
|
}
|
746
|
1
|
}
|
747
|
|
|
748
|
|
/**end repeat1**/
|
749
|
|
|
750
|
|
NPY_NO_EXPORT void
|
751
|
1
|
@TYPE@_power(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
752
|
|
{
|
753
|
1
|
BINARY_LOOP {
|
754
|
1
|
@type@ in1 = *(@type@ *)ip1;
|
755
|
1
|
@type@ in2 = *(@type@ *)ip2;
|
756
|
|
@type@ out;
|
757
|
|
|
758
|
|
#if @SIGNED@
|
759
|
1
|
if (in2 < 0) {
|
760
|
|
NPY_ALLOW_C_API_DEF
|
761
|
1
|
NPY_ALLOW_C_API;
|
762
|
1
|
PyErr_SetString(PyExc_ValueError,
|
763
|
|
"Integers to negative integer powers are not allowed.");
|
764
|
1
|
NPY_DISABLE_C_API;
|
765
|
1
|
return;
|
766
|
|
}
|
767
|
|
#endif
|
768
|
1
|
if (in2 == 0) {
|
769
|
1
|
*((@type@ *)op1) = 1;
|
770
|
1
|
continue;
|
771
|
|
}
|
772
|
1
|
if (in1 == 1) {
|
773
|
1
|
*((@type@ *)op1) = 1;
|
774
|
1
|
continue;
|
775
|
|
}
|
776
|
|
|
777
|
1
|
out = in2 & 1 ? in1 : 1;
|
778
|
1
|
in2 >>= 1;
|
779
|
1
|
while (in2 > 0) {
|
780
|
1
|
in1 *= in1;
|
781
|
1
|
if (in2 & 1) {
|
782
|
1
|
out *= in1;
|
783
|
|
}
|
784
|
1
|
in2 >>= 1;
|
785
|
|
}
|
786
|
1
|
*((@type@ *) op1) = out;
|
787
|
|
}
|
788
|
1
|
}
|
789
|
|
|
790
|
|
NPY_NO_EXPORT void
|
791
|
1
|
@TYPE@_fmod(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
792
|
|
{
|
793
|
1
|
BINARY_LOOP {
|
794
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
795
|
1
|
const @type@ in2 = *(@type@ *)ip2;
|
796
|
1
|
if (in2 == 0) {
|
797
|
0
|
npy_set_floatstatus_divbyzero();
|
798
|
0
|
*((@type@ *)op1) = 0;
|
799
|
|
}
|
800
|
|
else {
|
801
|
1
|
*((@type@ *)op1)= in1 % in2;
|
802
|
|
}
|
803
|
|
|
804
|
|
}
|
805
|
1
|
}
|
806
|
|
|
807
|
|
/**begin repeat1
|
808
|
|
* #kind = isnan, isinf, isfinite#
|
809
|
|
* #func = npy_isnan, npy_isinf, npy_isfinite#
|
810
|
|
* #val = NPY_FALSE, NPY_FALSE, NPY_TRUE#
|
811
|
|
**/
|
812
|
|
NPY_NO_EXPORT void
|
813
|
1
|
@TYPE@_@kind@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
814
|
|
{
|
815
|
|
/*
|
816
|
|
* The (void)in; suppresses an unused variable warning raised by gcc and allows
|
817
|
|
* us to re-use this macro even though we do not depend on in
|
818
|
|
*/
|
819
|
1
|
UNARY_LOOP_FAST(@type@, npy_bool, (void)in; *out = @val@);
|
820
|
1
|
}
|
821
|
|
/**end repeat1**/
|
822
|
|
|
823
|
|
/**end repeat**/
|
824
|
|
|
825
|
|
/**begin repeat
|
826
|
|
* #TYPE = BYTE, SHORT, INT, LONG, LONGLONG#
|
827
|
|
* #type = npy_byte, npy_short, npy_int, npy_long, npy_longlong#
|
828
|
|
* #c = ,,,l,ll#
|
829
|
|
*/
|
830
|
|
|
831
|
|
NPY_NO_EXPORT NPY_GCC_OPT_3 void
|
832
|
1
|
@TYPE@_absolute(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
833
|
|
{
|
834
|
1
|
UNARY_LOOP_FAST(@type@, @type@, *out = (in >= 0) ? in : -in);
|
835
|
1
|
}
|
836
|
|
|
837
|
|
NPY_NO_EXPORT NPY_GCC_OPT_3 void
|
838
|
1
|
@TYPE@_sign(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
839
|
|
{
|
840
|
1
|
UNARY_LOOP_FAST(@type@, @type@, *out = in > 0 ? 1 : (in < 0 ? -1 : 0));
|
841
|
1
|
}
|
842
|
|
|
843
|
|
NPY_NO_EXPORT void
|
844
|
1
|
@TYPE@_divide(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
845
|
|
{
|
846
|
1
|
BINARY_LOOP {
|
847
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
848
|
1
|
const @type@ in2 = *(@type@ *)ip2;
|
849
|
|
/*
|
850
|
|
* FIXME: On x86 at least, dividing the smallest representable integer
|
851
|
|
* by -1 causes a SIFGPE (division overflow). We treat this case here
|
852
|
|
* (to avoid a SIGFPE crash at python level), but a good solution would
|
853
|
|
* be to treat integer division problems separately from FPU exceptions
|
854
|
|
* (i.e. a different approach than npy_set_floatstatus_divbyzero()).
|
855
|
|
*/
|
856
|
1
|
if (in2 == 0 || (in1 == NPY_MIN_@TYPE@ && in2 == -1)) {
|
857
|
1
|
npy_set_floatstatus_divbyzero();
|
858
|
1
|
*((@type@ *)op1) = 0;
|
859
|
|
}
|
860
|
1
|
else if (((in1 > 0) != (in2 > 0)) && (in1 % in2 != 0)) {
|
861
|
1
|
*((@type@ *)op1) = in1/in2 - 1;
|
862
|
|
}
|
863
|
|
else {
|
864
|
1
|
*((@type@ *)op1) = in1/in2;
|
865
|
|
}
|
866
|
|
}
|
867
|
1
|
}
|
868
|
|
|
869
|
|
NPY_NO_EXPORT void
|
870
|
1
|
@TYPE@_remainder(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
871
|
|
{
|
872
|
1
|
BINARY_LOOP {
|
873
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
874
|
1
|
const @type@ in2 = *(@type@ *)ip2;
|
875
|
1
|
if (in2 == 0) {
|
876
|
0
|
npy_set_floatstatus_divbyzero();
|
877
|
0
|
*((@type@ *)op1) = 0;
|
878
|
|
}
|
879
|
|
else {
|
880
|
|
/* handle mixed case the way Python does */
|
881
|
1
|
const @type@ rem = in1 % in2;
|
882
|
1
|
if ((in1 > 0) == (in2 > 0) || rem == 0) {
|
883
|
1
|
*((@type@ *)op1) = rem;
|
884
|
|
}
|
885
|
|
else {
|
886
|
1
|
*((@type@ *)op1) = rem + in2;
|
887
|
|
}
|
888
|
|
}
|
889
|
|
}
|
890
|
1
|
}
|
891
|
|
|
892
|
|
NPY_NO_EXPORT void
|
893
|
1
|
@TYPE@_divmod(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
894
|
|
{
|
895
|
1
|
BINARY_LOOP_TWO_OUT {
|
896
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
897
|
1
|
const @type@ in2 = *(@type@ *)ip2;
|
898
|
|
/* see FIXME note for divide above */
|
899
|
1
|
if (in2 == 0 || (in1 == NPY_MIN_@TYPE@ && in2 == -1)) {
|
900
|
0
|
npy_set_floatstatus_divbyzero();
|
901
|
0
|
*((@type@ *)op1) = 0;
|
902
|
0
|
*((@type@ *)op2) = 0;
|
903
|
|
}
|
904
|
|
else {
|
905
|
|
/* handle mixed case the way Python does */
|
906
|
1
|
const @type@ quo = in1 / in2;
|
907
|
1
|
const @type@ rem = in1 % in2;
|
908
|
1
|
if ((in1 > 0) == (in2 > 0) || rem == 0) {
|
909
|
1
|
*((@type@ *)op1) = quo;
|
910
|
1
|
*((@type@ *)op2) = rem;
|
911
|
|
}
|
912
|
|
else {
|
913
|
1
|
*((@type@ *)op1) = quo - 1;
|
914
|
1
|
*((@type@ *)op2) = rem + in2;
|
915
|
|
}
|
916
|
|
}
|
917
|
|
}
|
918
|
1
|
}
|
919
|
|
|
920
|
|
/**begin repeat1
|
921
|
|
* #kind = gcd, lcm#
|
922
|
|
**/
|
923
|
|
NPY_NO_EXPORT void
|
924
|
1
|
@TYPE@_@kind@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
925
|
|
{
|
926
|
1
|
BINARY_LOOP {
|
927
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
928
|
1
|
const @type@ in2 = *(@type@ *)ip2;
|
929
|
1
|
*((@type@ *)op1) = npy_@kind@@c@(in1, in2);
|
930
|
|
}
|
931
|
1
|
}
|
932
|
|
/**end repeat1**/
|
933
|
|
|
934
|
|
/**end repeat**/
|
935
|
|
|
936
|
|
/**begin repeat
|
937
|
|
* #TYPE = UBYTE, USHORT, UINT, ULONG, ULONGLONG#
|
938
|
|
* #type = npy_ubyte, npy_ushort, npy_uint, npy_ulong, npy_ulonglong#
|
939
|
|
* #c = u,u,u,ul,ull#
|
940
|
|
*/
|
941
|
|
|
942
|
|
NPY_NO_EXPORT NPY_GCC_OPT_3 void
|
943
|
1
|
@TYPE@_absolute(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
944
|
|
{
|
945
|
1
|
UNARY_LOOP_FAST(@type@, @type@, *out = in);
|
946
|
1
|
}
|
947
|
|
|
948
|
|
NPY_NO_EXPORT NPY_GCC_OPT_3 void
|
949
|
1
|
@TYPE@_sign(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
950
|
|
{
|
951
|
1
|
UNARY_LOOP_FAST(@type@, @type@, *out = in > 0 ? 1 : 0);
|
952
|
1
|
}
|
953
|
|
|
954
|
|
NPY_NO_EXPORT void
|
955
|
1
|
@TYPE@_divide(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
956
|
|
{
|
957
|
1
|
BINARY_LOOP {
|
958
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
959
|
1
|
const @type@ in2 = *(@type@ *)ip2;
|
960
|
1
|
if (in2 == 0) {
|
961
|
1
|
npy_set_floatstatus_divbyzero();
|
962
|
1
|
*((@type@ *)op1) = 0;
|
963
|
|
}
|
964
|
|
else {
|
965
|
1
|
*((@type@ *)op1)= in1/in2;
|
966
|
|
}
|
967
|
|
}
|
968
|
1
|
}
|
969
|
|
|
970
|
|
NPY_NO_EXPORT void
|
971
|
1
|
@TYPE@_remainder(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
972
|
|
{
|
973
|
1
|
BINARY_LOOP {
|
974
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
975
|
1
|
const @type@ in2 = *(@type@ *)ip2;
|
976
|
1
|
if (in2 == 0) {
|
977
|
0
|
npy_set_floatstatus_divbyzero();
|
978
|
0
|
*((@type@ *)op1) = 0;
|
979
|
|
}
|
980
|
|
else {
|
981
|
1
|
*((@type@ *)op1) = in1 % in2;
|
982
|
|
}
|
983
|
|
}
|
984
|
1
|
}
|
985
|
|
|
986
|
|
NPY_NO_EXPORT void
|
987
|
1
|
@TYPE@_divmod(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
988
|
|
{
|
989
|
1
|
BINARY_LOOP_TWO_OUT {
|
990
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
991
|
1
|
const @type@ in2 = *(@type@ *)ip2;
|
992
|
1
|
if (in2 == 0) {
|
993
|
0
|
npy_set_floatstatus_divbyzero();
|
994
|
0
|
*((@type@ *)op1) = 0;
|
995
|
0
|
*((@type@ *)op2) = 0;
|
996
|
|
}
|
997
|
|
else {
|
998
|
1
|
*((@type@ *)op1)= in1/in2;
|
999
|
1
|
*((@type@ *)op2) = in1 % in2;
|
1000
|
|
}
|
1001
|
|
}
|
1002
|
1
|
}
|
1003
|
|
|
1004
|
|
/**begin repeat1
|
1005
|
|
* #kind = gcd, lcm#
|
1006
|
|
**/
|
1007
|
|
NPY_NO_EXPORT void
|
1008
|
1
|
@TYPE@_@kind@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1009
|
|
{
|
1010
|
1
|
BINARY_LOOP {
|
1011
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
1012
|
1
|
const @type@ in2 = *(@type@ *)ip2;
|
1013
|
1
|
*((@type@ *)op1) = npy_@kind@@c@(in1, in2);
|
1014
|
|
}
|
1015
|
1
|
}
|
1016
|
|
/**end repeat1**/
|
1017
|
|
|
1018
|
|
/**end repeat**/
|
1019
|
|
|
1020
|
|
/*
|
1021
|
|
*****************************************************************************
|
1022
|
|
** DATETIME LOOPS **
|
1023
|
|
*****************************************************************************
|
1024
|
|
*/
|
1025
|
|
|
1026
|
|
NPY_NO_EXPORT void
|
1027
|
1
|
TIMEDELTA_negative(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1028
|
|
{
|
1029
|
1
|
UNARY_LOOP {
|
1030
|
1
|
const npy_timedelta in1 = *(npy_timedelta *)ip1;
|
1031
|
1
|
if (in1 == NPY_DATETIME_NAT) {
|
1032
|
0
|
*((npy_timedelta *)op1) = NPY_DATETIME_NAT;
|
1033
|
|
}
|
1034
|
|
else {
|
1035
|
1
|
*((npy_timedelta *)op1) = -in1;
|
1036
|
|
}
|
1037
|
|
}
|
1038
|
1
|
}
|
1039
|
|
|
1040
|
|
NPY_NO_EXPORT void
|
1041
|
1
|
TIMEDELTA_positive(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1042
|
|
{
|
1043
|
1
|
UNARY_LOOP {
|
1044
|
1
|
const npy_timedelta in1 = *(npy_timedelta *)ip1;
|
1045
|
1
|
*((npy_timedelta *)op1) = +in1;
|
1046
|
|
}
|
1047
|
1
|
}
|
1048
|
|
|
1049
|
|
NPY_NO_EXPORT void
|
1050
|
1
|
TIMEDELTA_absolute(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1051
|
|
{
|
1052
|
1
|
UNARY_LOOP {
|
1053
|
1
|
const npy_timedelta in1 = *(npy_timedelta *)ip1;
|
1054
|
1
|
if (in1 == NPY_DATETIME_NAT) {
|
1055
|
0
|
*((npy_timedelta *)op1) = NPY_DATETIME_NAT;
|
1056
|
|
}
|
1057
|
|
else {
|
1058
|
1
|
*((npy_timedelta *)op1) = (in1 >= 0) ? in1 : -in1;
|
1059
|
|
}
|
1060
|
|
}
|
1061
|
1
|
}
|
1062
|
|
|
1063
|
|
NPY_NO_EXPORT void
|
1064
|
1
|
TIMEDELTA_sign(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1065
|
|
{
|
1066
|
1
|
UNARY_LOOP {
|
1067
|
1
|
const npy_timedelta in1 = *(npy_timedelta *)ip1;
|
1068
|
1
|
*((npy_timedelta *)op1) = in1 > 0 ? 1 : (in1 < 0 ? -1 : 0);
|
1069
|
|
}
|
1070
|
1
|
}
|
1071
|
|
|
1072
|
|
/**begin repeat
|
1073
|
|
* #type = npy_datetime, npy_timedelta#
|
1074
|
|
* #TYPE = DATETIME, TIMEDELTA#
|
1075
|
|
*/
|
1076
|
|
|
1077
|
|
NPY_NO_EXPORT void
|
1078
|
1
|
@TYPE@_isnat(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1079
|
|
{
|
1080
|
1
|
UNARY_LOOP {
|
1081
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
1082
|
1
|
*((npy_bool *)op1) = (in1 == NPY_DATETIME_NAT);
|
1083
|
|
}
|
1084
|
1
|
}
|
1085
|
|
|
1086
|
|
NPY_NO_EXPORT void
|
1087
|
1
|
@TYPE@_isfinite(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1088
|
|
{
|
1089
|
1
|
UNARY_LOOP {
|
1090
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
1091
|
1
|
*((npy_bool *)op1) = (in1 != NPY_DATETIME_NAT);
|
1092
|
|
}
|
1093
|
1
|
}
|
1094
|
|
|
1095
|
|
NPY_NO_EXPORT void
|
1096
|
1
|
@TYPE@_isinf(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1097
|
|
{
|
1098
|
1
|
UNARY_LOOP_FAST(npy_bool, npy_bool, (void)in; *out = NPY_FALSE);
|
1099
|
1
|
}
|
1100
|
|
|
1101
|
|
NPY_NO_EXPORT void
|
1102
|
0
|
@TYPE@__ones_like(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(data))
|
1103
|
|
{
|
1104
|
0
|
OUTPUT_LOOP {
|
1105
|
0
|
*((@type@ *)op1) = 1;
|
1106
|
|
}
|
1107
|
0
|
}
|
1108
|
|
|
1109
|
|
/**begin repeat1
|
1110
|
|
* #kind = equal, greater, greater_equal, less, less_equal#
|
1111
|
|
* #OP = ==, >, >=, <, <=#
|
1112
|
|
*/
|
1113
|
|
NPY_NO_EXPORT void
|
1114
|
1
|
@TYPE@_@kind@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1115
|
|
{
|
1116
|
1
|
BINARY_LOOP {
|
1117
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
1118
|
1
|
const @type@ in2 = *(@type@ *)ip2;
|
1119
|
1
|
*((npy_bool *)op1) = (in1 @OP@ in2 &&
|
1120
|
1
|
in1 != NPY_DATETIME_NAT &&
|
1121
|
|
in2 != NPY_DATETIME_NAT);
|
1122
|
|
}
|
1123
|
1
|
}
|
1124
|
|
/**end repeat1**/
|
1125
|
|
|
1126
|
|
NPY_NO_EXPORT void
|
1127
|
1
|
@TYPE@_not_equal(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1128
|
|
{
|
1129
|
1
|
BINARY_LOOP {
|
1130
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
1131
|
1
|
const @type@ in2 = *(@type@ *)ip2;
|
1132
|
1
|
*((npy_bool *)op1) = (in1 != in2 ||
|
1133
|
1
|
in1 == NPY_DATETIME_NAT ||
|
1134
|
|
in2 == NPY_DATETIME_NAT);
|
1135
|
|
}
|
1136
|
1
|
}
|
1137
|
|
|
1138
|
|
|
1139
|
|
/**begin repeat1
|
1140
|
|
* #kind = maximum, minimum#
|
1141
|
|
* #OP = >, <#
|
1142
|
|
**/
|
1143
|
|
NPY_NO_EXPORT void
|
1144
|
1
|
@TYPE@_@kind@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1145
|
|
{
|
1146
|
1
|
BINARY_LOOP {
|
1147
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
1148
|
1
|
const @type@ in2 = *(@type@ *)ip2;
|
1149
|
1
|
if (in1 == NPY_DATETIME_NAT) {
|
1150
|
1
|
*((@type@ *)op1) = in1;
|
1151
|
|
}
|
1152
|
1
|
else if (in2 == NPY_DATETIME_NAT) {
|
1153
|
1
|
*((@type@ *)op1) = in2;
|
1154
|
|
}
|
1155
|
|
else {
|
1156
|
1
|
*((@type@ *)op1) = (in1 @OP@ in2) ? in1 : in2;
|
1157
|
|
}
|
1158
|
|
}
|
1159
|
1
|
}
|
1160
|
|
/**end repeat1**/
|
1161
|
|
|
1162
|
|
/**begin repeat1
|
1163
|
|
* #kind = fmax, fmin#
|
1164
|
|
* #OP = >=, <=#
|
1165
|
|
**/
|
1166
|
|
NPY_NO_EXPORT void
|
1167
|
1
|
@TYPE@_@kind@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1168
|
|
{
|
1169
|
1
|
BINARY_LOOP {
|
1170
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
1171
|
1
|
const @type@ in2 = *(@type@ *)ip2;
|
1172
|
1
|
if (in1 == NPY_DATETIME_NAT) {
|
1173
|
1
|
*((@type@ *)op1) = in2;
|
1174
|
|
}
|
1175
|
1
|
else if (in2 == NPY_DATETIME_NAT) {
|
1176
|
1
|
*((@type@ *)op1) = in1;
|
1177
|
|
}
|
1178
|
|
else {
|
1179
|
1
|
*((@type@ *)op1) = in1 @OP@ in2 ? in1 : in2;
|
1180
|
|
}
|
1181
|
|
}
|
1182
|
1
|
}
|
1183
|
|
/**end repeat1**/
|
1184
|
|
|
1185
|
|
/**end repeat**/
|
1186
|
|
|
1187
|
|
NPY_NO_EXPORT void
|
1188
|
1
|
DATETIME_Mm_M_add(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(data))
|
1189
|
|
{
|
1190
|
1
|
BINARY_LOOP {
|
1191
|
1
|
const npy_datetime in1 = *(npy_datetime *)ip1;
|
1192
|
1
|
const npy_timedelta in2 = *(npy_timedelta *)ip2;
|
1193
|
1
|
if (in1 == NPY_DATETIME_NAT || in2 == NPY_DATETIME_NAT) {
|
1194
|
1
|
*((npy_datetime *)op1) = NPY_DATETIME_NAT;
|
1195
|
|
}
|
1196
|
|
else {
|
1197
|
1
|
*((npy_datetime *)op1) = in1 + in2;
|
1198
|
|
}
|
1199
|
|
}
|
1200
|
1
|
}
|
1201
|
|
|
1202
|
|
NPY_NO_EXPORT void
|
1203
|
1
|
DATETIME_mM_M_add(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1204
|
|
{
|
1205
|
1
|
BINARY_LOOP {
|
1206
|
1
|
const npy_timedelta in1 = *(npy_timedelta *)ip1;
|
1207
|
1
|
const npy_datetime in2 = *(npy_datetime *)ip2;
|
1208
|
1
|
if (in1 == NPY_DATETIME_NAT || in2 == NPY_DATETIME_NAT) {
|
1209
|
1
|
*((npy_datetime *)op1) = NPY_DATETIME_NAT;
|
1210
|
|
}
|
1211
|
|
else {
|
1212
|
1
|
*((npy_datetime *)op1) = in1 + in2;
|
1213
|
|
}
|
1214
|
|
}
|
1215
|
1
|
}
|
1216
|
|
|
1217
|
|
NPY_NO_EXPORT void
|
1218
|
1
|
TIMEDELTA_mm_m_add(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1219
|
|
{
|
1220
|
1
|
BINARY_LOOP {
|
1221
|
1
|
const npy_timedelta in1 = *(npy_timedelta *)ip1;
|
1222
|
1
|
const npy_timedelta in2 = *(npy_timedelta *)ip2;
|
1223
|
1
|
if (in1 == NPY_DATETIME_NAT || in2 == NPY_DATETIME_NAT) {
|
1224
|
0
|
*((npy_timedelta *)op1) = NPY_DATETIME_NAT;
|
1225
|
|
}
|
1226
|
|
else {
|
1227
|
1
|
*((npy_timedelta *)op1) = in1 + in2;
|
1228
|
|
}
|
1229
|
|
}
|
1230
|
1
|
}
|
1231
|
|
|
1232
|
|
NPY_NO_EXPORT void
|
1233
|
1
|
DATETIME_Mm_M_subtract(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1234
|
|
{
|
1235
|
1
|
BINARY_LOOP {
|
1236
|
1
|
const npy_datetime in1 = *(npy_datetime *)ip1;
|
1237
|
1
|
const npy_timedelta in2 = *(npy_timedelta *)ip2;
|
1238
|
1
|
if (in1 == NPY_DATETIME_NAT || in2 == NPY_DATETIME_NAT) {
|
1239
|
1
|
*((npy_datetime *)op1) = NPY_DATETIME_NAT;
|
1240
|
|
}
|
1241
|
|
else {
|
1242
|
1
|
*((npy_datetime *)op1) = in1 - in2;
|
1243
|
|
}
|
1244
|
|
}
|
1245
|
1
|
}
|
1246
|
|
|
1247
|
|
NPY_NO_EXPORT void
|
1248
|
1
|
DATETIME_MM_m_subtract(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1249
|
|
{
|
1250
|
1
|
BINARY_LOOP {
|
1251
|
1
|
const npy_datetime in1 = *(npy_datetime *)ip1;
|
1252
|
1
|
const npy_datetime in2 = *(npy_datetime *)ip2;
|
1253
|
1
|
if (in1 == NPY_DATETIME_NAT || in2 == NPY_DATETIME_NAT) {
|
1254
|
0
|
*((npy_timedelta *)op1) = NPY_DATETIME_NAT;
|
1255
|
|
}
|
1256
|
|
else {
|
1257
|
1
|
*((npy_timedelta *)op1) = in1 - in2;
|
1258
|
|
}
|
1259
|
|
}
|
1260
|
1
|
}
|
1261
|
|
|
1262
|
|
NPY_NO_EXPORT void
|
1263
|
1
|
TIMEDELTA_mm_m_subtract(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1264
|
|
{
|
1265
|
1
|
BINARY_LOOP {
|
1266
|
1
|
const npy_timedelta in1 = *(npy_timedelta *)ip1;
|
1267
|
1
|
const npy_timedelta in2 = *(npy_timedelta *)ip2;
|
1268
|
1
|
if (in1 == NPY_DATETIME_NAT || in2 == NPY_DATETIME_NAT) {
|
1269
|
0
|
*((npy_timedelta *)op1) = NPY_DATETIME_NAT;
|
1270
|
|
}
|
1271
|
|
else {
|
1272
|
1
|
*((npy_timedelta *)op1) = in1 - in2;
|
1273
|
|
}
|
1274
|
|
}
|
1275
|
1
|
}
|
1276
|
|
|
1277
|
|
/* Note: Assuming 'q' == NPY_LONGLONG */
|
1278
|
|
NPY_NO_EXPORT void
|
1279
|
1
|
TIMEDELTA_mq_m_multiply(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1280
|
|
{
|
1281
|
1
|
BINARY_LOOP {
|
1282
|
1
|
const npy_timedelta in1 = *(npy_timedelta *)ip1;
|
1283
|
1
|
const npy_int64 in2 = *(npy_int64 *)ip2;
|
1284
|
1
|
if (in1 == NPY_DATETIME_NAT) {
|
1285
|
1
|
*((npy_timedelta *)op1) = NPY_DATETIME_NAT;
|
1286
|
|
}
|
1287
|
|
else {
|
1288
|
1
|
*((npy_timedelta *)op1) = in1 * in2;
|
1289
|
|
}
|
1290
|
|
}
|
1291
|
1
|
}
|
1292
|
|
|
1293
|
|
/* Note: Assuming 'q' == NPY_LONGLONG */
|
1294
|
|
NPY_NO_EXPORT void
|
1295
|
1
|
TIMEDELTA_qm_m_multiply(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1296
|
|
{
|
1297
|
1
|
BINARY_LOOP {
|
1298
|
1
|
const npy_int64 in1 = *(npy_int64 *)ip1;
|
1299
|
1
|
const npy_timedelta in2 = *(npy_timedelta *)ip2;
|
1300
|
1
|
if (in2 == NPY_DATETIME_NAT) {
|
1301
|
1
|
*((npy_timedelta *)op1) = NPY_DATETIME_NAT;
|
1302
|
|
}
|
1303
|
|
else {
|
1304
|
1
|
*((npy_timedelta *)op1) = in1 * in2;
|
1305
|
|
}
|
1306
|
|
}
|
1307
|
1
|
}
|
1308
|
|
|
1309
|
|
NPY_NO_EXPORT void
|
1310
|
1
|
TIMEDELTA_md_m_multiply(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1311
|
|
{
|
1312
|
1
|
BINARY_LOOP {
|
1313
|
1
|
const npy_timedelta in1 = *(npy_timedelta *)ip1;
|
1314
|
1
|
const double in2 = *(double *)ip2;
|
1315
|
1
|
if (in1 == NPY_DATETIME_NAT) {
|
1316
|
1
|
*((npy_timedelta *)op1) = NPY_DATETIME_NAT;
|
1317
|
|
}
|
1318
|
|
else {
|
1319
|
1
|
double result = in1 * in2;
|
1320
|
1
|
if (npy_isfinite(result)) {
|
1321
|
1
|
*((npy_timedelta *)op1) = (npy_timedelta)result;
|
1322
|
|
}
|
1323
|
|
else {
|
1324
|
1
|
*((npy_timedelta *)op1) = NPY_DATETIME_NAT;
|
1325
|
|
}
|
1326
|
|
}
|
1327
|
|
}
|
1328
|
1
|
}
|
1329
|
|
|
1330
|
|
NPY_NO_EXPORT void
|
1331
|
1
|
TIMEDELTA_dm_m_multiply(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1332
|
|
{
|
1333
|
1
|
BINARY_LOOP {
|
1334
|
1
|
const double in1 = *(double *)ip1;
|
1335
|
1
|
const npy_timedelta in2 = *(npy_timedelta *)ip2;
|
1336
|
1
|
if (in2 == NPY_DATETIME_NAT) {
|
1337
|
1
|
*((npy_timedelta *)op1) = NPY_DATETIME_NAT;
|
1338
|
|
}
|
1339
|
|
else {
|
1340
|
1
|
double result = in1 * in2;
|
1341
|
1
|
if (npy_isfinite(result)) {
|
1342
|
1
|
*((npy_timedelta *)op1) = (npy_timedelta)result;
|
1343
|
|
}
|
1344
|
|
else {
|
1345
|
1
|
*((npy_timedelta *)op1) = NPY_DATETIME_NAT;
|
1346
|
|
}
|
1347
|
|
}
|
1348
|
|
}
|
1349
|
1
|
}
|
1350
|
|
|
1351
|
|
/* Note: Assuming 'q' == NPY_LONGLONG */
|
1352
|
|
NPY_NO_EXPORT void
|
1353
|
1
|
TIMEDELTA_mq_m_divide(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1354
|
|
{
|
1355
|
1
|
BINARY_LOOP {
|
1356
|
1
|
const npy_timedelta in1 = *(npy_timedelta *)ip1;
|
1357
|
1
|
const npy_int64 in2 = *(npy_int64 *)ip2;
|
1358
|
1
|
if (in1 == NPY_DATETIME_NAT || in2 == 0) {
|
1359
|
1
|
*((npy_timedelta *)op1) = NPY_DATETIME_NAT;
|
1360
|
|
}
|
1361
|
|
else {
|
1362
|
1
|
*((npy_timedelta *)op1) = in1 / in2;
|
1363
|
|
}
|
1364
|
|
}
|
1365
|
1
|
}
|
1366
|
|
|
1367
|
|
NPY_NO_EXPORT void
|
1368
|
1
|
TIMEDELTA_md_m_divide(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1369
|
|
{
|
1370
|
1
|
BINARY_LOOP {
|
1371
|
1
|
const npy_timedelta in1 = *(npy_timedelta *)ip1;
|
1372
|
1
|
const double in2 = *(double *)ip2;
|
1373
|
1
|
if (in1 == NPY_DATETIME_NAT) {
|
1374
|
1
|
*((npy_timedelta *)op1) = NPY_DATETIME_NAT;
|
1375
|
|
}
|
1376
|
|
else {
|
1377
|
1
|
double result = in1 / in2;
|
1378
|
1
|
if (npy_isfinite(result)) {
|
1379
|
1
|
*((npy_timedelta *)op1) = (npy_timedelta)result;
|
1380
|
|
}
|
1381
|
|
else {
|
1382
|
1
|
*((npy_timedelta *)op1) = NPY_DATETIME_NAT;
|
1383
|
|
}
|
1384
|
|
}
|
1385
|
|
}
|
1386
|
1
|
}
|
1387
|
|
|
1388
|
|
NPY_NO_EXPORT void
|
1389
|
1
|
TIMEDELTA_mm_d_divide(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1390
|
|
{
|
1391
|
1
|
BINARY_LOOP {
|
1392
|
1
|
const npy_timedelta in1 = *(npy_timedelta *)ip1;
|
1393
|
1
|
const npy_timedelta in2 = *(npy_timedelta *)ip2;
|
1394
|
1
|
if (in1 == NPY_DATETIME_NAT || in2 == NPY_DATETIME_NAT) {
|
1395
|
0
|
*((double *)op1) = NPY_NAN;
|
1396
|
|
}
|
1397
|
|
else {
|
1398
|
1
|
*((double *)op1) = (double)in1 / (double)in2;
|
1399
|
|
}
|
1400
|
|
}
|
1401
|
1
|
}
|
1402
|
|
|
1403
|
|
NPY_NO_EXPORT void
|
1404
|
1
|
TIMEDELTA_mm_m_remainder(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1405
|
|
{
|
1406
|
1
|
BINARY_LOOP {
|
1407
|
1
|
const npy_timedelta in1 = *(npy_timedelta *)ip1;
|
1408
|
1
|
const npy_timedelta in2 = *(npy_timedelta *)ip2;
|
1409
|
1
|
if (in1 == NPY_DATETIME_NAT || in2 == NPY_DATETIME_NAT) {
|
1410
|
1
|
*((npy_timedelta *)op1) = NPY_DATETIME_NAT;
|
1411
|
|
}
|
1412
|
|
else {
|
1413
|
1
|
if (in2 == 0) {
|
1414
|
1
|
npy_set_floatstatus_divbyzero();
|
1415
|
1
|
*((npy_timedelta *)op1) = NPY_DATETIME_NAT;
|
1416
|
|
}
|
1417
|
|
else {
|
1418
|
|
/* handle mixed case the way Python does */
|
1419
|
1
|
const npy_timedelta rem = in1 % in2;
|
1420
|
1
|
if ((in1 > 0) == (in2 > 0) || rem == 0) {
|
1421
|
1
|
*((npy_timedelta *)op1) = rem;
|
1422
|
|
}
|
1423
|
|
else {
|
1424
|
1
|
*((npy_timedelta *)op1) = rem + in2;
|
1425
|
|
}
|
1426
|
|
}
|
1427
|
|
}
|
1428
|
|
}
|
1429
|
1
|
}
|
1430
|
|
|
1431
|
|
NPY_NO_EXPORT void
|
1432
|
1
|
TIMEDELTA_mm_q_floor_divide(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1433
|
|
{
|
1434
|
1
|
BINARY_LOOP {
|
1435
|
1
|
const npy_timedelta in1 = *(npy_timedelta *)ip1;
|
1436
|
1
|
const npy_timedelta in2 = *(npy_timedelta *)ip2;
|
1437
|
1
|
if (in1 == NPY_DATETIME_NAT || in2 == NPY_DATETIME_NAT) {
|
1438
|
1
|
npy_set_floatstatus_invalid();
|
1439
|
1
|
*((npy_int64 *)op1) = 0;
|
1440
|
|
}
|
1441
|
1
|
else if (in2 == 0) {
|
1442
|
1
|
npy_set_floatstatus_divbyzero();
|
1443
|
1
|
*((npy_int64 *)op1) = 0;
|
1444
|
|
}
|
1445
|
|
else {
|
1446
|
1
|
if (((in1 > 0) != (in2 > 0)) && (in1 % in2 != 0)) {
|
1447
|
1
|
*((npy_int64 *)op1) = in1/in2 - 1;
|
1448
|
|
}
|
1449
|
|
else {
|
1450
|
1
|
*((npy_int64 *)op1) = in1/in2;
|
1451
|
|
}
|
1452
|
|
}
|
1453
|
|
}
|
1454
|
1
|
}
|
1455
|
|
|
1456
|
|
NPY_NO_EXPORT void
|
1457
|
1
|
TIMEDELTA_mm_qm_divmod(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1458
|
|
{
|
1459
|
1
|
BINARY_LOOP_TWO_OUT {
|
1460
|
1
|
const npy_timedelta in1 = *(npy_timedelta *)ip1;
|
1461
|
1
|
const npy_timedelta in2 = *(npy_timedelta *)ip2;
|
1462
|
1
|
if (in1 == NPY_DATETIME_NAT || in2 == NPY_DATETIME_NAT) {
|
1463
|
1
|
npy_set_floatstatus_invalid();
|
1464
|
1
|
*((npy_int64 *)op1) = 0;
|
1465
|
1
|
*((npy_timedelta *)op2) = NPY_DATETIME_NAT;
|
1466
|
|
}
|
1467
|
1
|
else if (in2 == 0) {
|
1468
|
1
|
npy_set_floatstatus_divbyzero();
|
1469
|
1
|
*((npy_int64 *)op1) = 0;
|
1470
|
1
|
*((npy_timedelta *)op2) = NPY_DATETIME_NAT;
|
1471
|
|
}
|
1472
|
|
else {
|
1473
|
1
|
const npy_int64 quo = in1 / in2;
|
1474
|
1
|
const npy_timedelta rem = in1 % in2;
|
1475
|
1
|
if ((in1 > 0) == (in2 > 0) || rem == 0) {
|
1476
|
1
|
*((npy_int64 *)op1) = quo;
|
1477
|
1
|
*((npy_timedelta *)op2) = rem;
|
1478
|
|
}
|
1479
|
|
else {
|
1480
|
1
|
*((npy_int64 *)op1) = quo - 1;
|
1481
|
1
|
*((npy_timedelta *)op2) = rem + in2;
|
1482
|
|
}
|
1483
|
|
}
|
1484
|
|
}
|
1485
|
1
|
}
|
1486
|
|
|
1487
|
|
/*
|
1488
|
|
*****************************************************************************
|
1489
|
|
** FLOAT LOOPS **
|
1490
|
|
*****************************************************************************
|
1491
|
|
*/
|
1492
|
|
|
1493
|
|
/**begin repeat
|
1494
|
|
* Float types
|
1495
|
|
* #type = npy_float, npy_double#
|
1496
|
|
* #TYPE = FLOAT, DOUBLE#
|
1497
|
|
* #scalarf = npy_sqrtf, npy_sqrt#
|
1498
|
|
*/
|
1499
|
|
|
1500
|
|
NPY_NO_EXPORT void
|
1501
|
0
|
@TYPE@_sqrt(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1502
|
|
{
|
1503
|
0
|
if (!run_unary_simd_sqrt_@TYPE@(args, dimensions, steps)) {
|
1504
|
0
|
UNARY_LOOP {
|
1505
|
0
|
const @type@ in1 = *(@type@ *)ip1;
|
1506
|
0
|
*(@type@ *)op1 = @scalarf@(in1);
|
1507
|
|
}
|
1508
|
|
}
|
1509
|
0
|
}
|
1510
|
|
|
1511
|
|
/**end repeat**/
|
1512
|
|
|
1513
|
|
/**begin repeat
|
1514
|
|
* #func = rint, ceil, floor, trunc#
|
1515
|
|
* #scalarf = npy_rint, npy_ceil, npy_floor, npy_trunc#
|
1516
|
|
*/
|
1517
|
|
|
1518
|
|
/**begin repeat1
|
1519
|
|
* #TYPE = FLOAT, DOUBLE#
|
1520
|
|
* #type = npy_float, npy_double#
|
1521
|
|
* #typesub = f, #
|
1522
|
|
*/
|
1523
|
|
|
1524
|
|
NPY_NO_EXPORT NPY_GCC_OPT_3 void
|
1525
|
0
|
@TYPE@_@func@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(data))
|
1526
|
|
{
|
1527
|
0
|
UNARY_LOOP {
|
1528
|
0
|
const @type@ in1 = *(@type@ *)ip1;
|
1529
|
0
|
*(@type@ *)op1 = @scalarf@@typesub@(in1);
|
1530
|
|
}
|
1531
|
0
|
}
|
1532
|
|
|
1533
|
|
|
1534
|
|
/**end repeat1**/
|
1535
|
|
/**end repeat**/
|
1536
|
|
|
1537
|
|
/**begin repeat
|
1538
|
|
* #func = sin, cos, exp, log#
|
1539
|
|
* #scalarf = npy_sinf, npy_cosf, npy_expf, npy_logf#
|
1540
|
|
*/
|
1541
|
|
|
1542
|
|
NPY_NO_EXPORT NPY_GCC_OPT_3 void
|
1543
|
0
|
FLOAT_@func@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(data))
|
1544
|
|
{
|
1545
|
0
|
UNARY_LOOP {
|
1546
|
0
|
const npy_float in1 = *(npy_float *)ip1;
|
1547
|
0
|
*(npy_float *)op1 = @scalarf@(in1);
|
1548
|
|
}
|
1549
|
0
|
}
|
1550
|
|
|
1551
|
|
/**end repeat**/
|
1552
|
|
|
1553
|
|
NPY_NO_EXPORT NPY_GCC_OPT_3 void
|
1554
|
0
|
DOUBLE_exp(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(data))
|
1555
|
|
{
|
1556
|
0
|
UNARY_LOOP {
|
1557
|
0
|
const npy_double in1 = *(npy_double *)ip1;
|
1558
|
0
|
*(npy_double *)op1 = npy_exp(in1);
|
1559
|
|
}
|
1560
|
0
|
}
|
1561
|
|
NPY_NO_EXPORT NPY_GCC_OPT_3 void
|
1562
|
0
|
DOUBLE_log(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(data))
|
1563
|
|
{
|
1564
|
0
|
UNARY_LOOP {
|
1565
|
0
|
const npy_double in1 = *(npy_double *)ip1;
|
1566
|
0
|
*(npy_double *)op1 = npy_log(in1);
|
1567
|
|
}
|
1568
|
0
|
}
|
1569
|
|
|
1570
|
|
/**begin repeat
|
1571
|
|
* #isa = avx512f, fma#
|
1572
|
|
* #ISA = AVX512F, FMA#
|
1573
|
|
* #CHK = HAVE_ATTRIBUTE_TARGET_AVX512F_WITH_INTRINSICS, HAVE_ATTRIBUTE_TARGET_AVX2_WITH_INTRINSICS#
|
1574
|
|
*/
|
1575
|
|
|
1576
|
|
/**begin repeat1
|
1577
|
|
* #TYPE = FLOAT, DOUBLE#
|
1578
|
|
* #type = npy_float, npy_double#
|
1579
|
|
* #typesub = f, #
|
1580
|
|
*/
|
1581
|
|
|
1582
|
|
NPY_NO_EXPORT NPY_GCC_OPT_3 void
|
1583
|
1
|
@TYPE@_sqrt_@isa@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(data))
|
1584
|
|
{
|
1585
|
1
|
if (!run_unary_@isa@_sqrt_@TYPE@(args, dimensions, steps)) {
|
1586
|
1
|
UNARY_LOOP {
|
1587
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
1588
|
1
|
*(@type@ *)op1 = npy_sqrt@typesub@(in1);
|
1589
|
|
}
|
1590
|
|
}
|
1591
|
1
|
}
|
1592
|
|
|
1593
|
|
NPY_NO_EXPORT NPY_GCC_OPT_3 void
|
1594
|
1
|
@TYPE@_absolute_@isa@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(data))
|
1595
|
|
{
|
1596
|
1
|
if (!run_unary_@isa@_absolute_@TYPE@(args, dimensions, steps)) {
|
1597
|
1
|
UNARY_LOOP {
|
1598
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
1599
|
1
|
const @type@ tmp = in1 > 0 ? in1 : -in1;
|
1600
|
|
/* add 0 to clear -0.0 */
|
1601
|
1
|
*((@type@ *)op1) = tmp + 0;
|
1602
|
|
}
|
1603
|
|
}
|
1604
|
1
|
npy_clear_floatstatus_barrier((char*)dimensions);
|
1605
|
1
|
}
|
1606
|
|
|
1607
|
|
NPY_NO_EXPORT NPY_GCC_OPT_3 void
|
1608
|
1
|
@TYPE@_square_@isa@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(data))
|
1609
|
|
{
|
1610
|
1
|
if (!run_unary_@isa@_square_@TYPE@(args, dimensions, steps)) {
|
1611
|
1
|
UNARY_LOOP {
|
1612
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
1613
|
1
|
*(@type@ *)op1 = in1*in1;
|
1614
|
|
}
|
1615
|
|
}
|
1616
|
1
|
}
|
1617
|
|
|
1618
|
|
NPY_NO_EXPORT NPY_GCC_OPT_3 void
|
1619
|
1
|
@TYPE@_reciprocal_@isa@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(data))
|
1620
|
|
{
|
1621
|
1
|
if (!run_unary_@isa@_reciprocal_@TYPE@(args, dimensions, steps)) {
|
1622
|
1
|
UNARY_LOOP {
|
1623
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
1624
|
1
|
*(@type@ *)op1 = 1.0f/in1;
|
1625
|
|
}
|
1626
|
|
}
|
1627
|
1
|
}
|
1628
|
|
|
1629
|
|
/**begin repeat2
|
1630
|
|
* #func = rint, ceil, floor, trunc#
|
1631
|
|
* #scalarf = npy_rint, npy_ceil, npy_floor, npy_trunc#
|
1632
|
|
*/
|
1633
|
|
|
1634
|
|
NPY_NO_EXPORT NPY_GCC_OPT_3 void
|
1635
|
1
|
@TYPE@_@func@_@isa@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(data))
|
1636
|
|
{
|
1637
|
1
|
if (!run_unary_@isa@_@func@_@TYPE@(args, dimensions, steps)) {
|
1638
|
1
|
UNARY_LOOP {
|
1639
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
1640
|
1
|
*(@type@ *)op1 = @scalarf@@typesub@(in1);
|
1641
|
|
}
|
1642
|
|
}
|
1643
|
1
|
}
|
1644
|
|
|
1645
|
|
/**end repeat2**/
|
1646
|
|
/**end repeat1**/
|
1647
|
|
|
1648
|
|
/**begin repeat1
|
1649
|
|
* #func = exp, log#
|
1650
|
|
* #scalarf = npy_expf, npy_logf#
|
1651
|
|
*/
|
1652
|
|
|
1653
|
|
NPY_NO_EXPORT NPY_GCC_OPT_3 void
|
1654
|
1
|
FLOAT_@func@_@isa@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(data))
|
1655
|
|
{
|
1656
|
1
|
if (!run_unary_@isa@_@func@_FLOAT(args, dimensions, steps)) {
|
1657
|
1
|
UNARY_LOOP {
|
1658
|
|
/*
|
1659
|
|
* We use the AVX function to compute exp/log for scalar elements as well.
|
1660
|
|
* This is needed to ensure the output of strided and non-strided
|
1661
|
|
* cases match. SIMD code handles strided input cases, but not
|
1662
|
|
* strided output.
|
1663
|
|
*/
|
1664
|
|
#if defined @CHK@ && defined NPY_HAVE_SSE2_INTRINSICS
|
1665
|
1
|
@ISA@_@func@_FLOAT((npy_float *)op1, (npy_float *)ip1, 1, steps[0]);
|
1666
|
|
#else
|
1667
|
|
const npy_float in1 = *(npy_float *)ip1;
|
1668
|
|
*(npy_float *)op1 = @scalarf@(in1);
|
1669
|
|
#endif
|
1670
|
|
}
|
1671
|
|
}
|
1672
|
1
|
}
|
1673
|
|
|
1674
|
|
/**end repeat1**/
|
1675
|
|
|
1676
|
|
/**begin repeat1
|
1677
|
|
* #func = cos, sin#
|
1678
|
|
* #enum = npy_compute_cos, npy_compute_sin#
|
1679
|
|
* #scalarf = npy_cosf, npy_sinf#
|
1680
|
|
*/
|
1681
|
|
|
1682
|
|
NPY_NO_EXPORT NPY_GCC_OPT_3 void
|
1683
|
1
|
FLOAT_@func@_@isa@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(data))
|
1684
|
|
{
|
1685
|
1
|
if (!run_unary_@isa@_sincos_FLOAT(args, dimensions, steps, @enum@)) {
|
1686
|
1
|
UNARY_LOOP {
|
1687
|
|
#if defined @CHK@ && defined NPY_HAVE_SSE2_INTRINSICS
|
1688
|
1
|
@ISA@_sincos_FLOAT((npy_float *)op1, (npy_float *)ip1, 1, steps[0], @enum@);
|
1689
|
|
#else
|
1690
|
|
const npy_float in1 = *(npy_float *)ip1;
|
1691
|
|
*(npy_float *)op1 = @scalarf@(in1);
|
1692
|
|
#endif
|
1693
|
|
}
|
1694
|
|
}
|
1695
|
1
|
}
|
1696
|
|
|
1697
|
|
/**end repeat1**/
|
1698
|
|
/**end repeat**/
|
1699
|
|
|
1700
|
|
NPY_NO_EXPORT NPY_GCC_OPT_3 void
|
1701
|
1
|
DOUBLE_exp_avx512f(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(data))
|
1702
|
|
{
|
1703
|
1
|
if (!run_unary_avx512f_exp_DOUBLE(args, dimensions, steps)) {
|
1704
|
1
|
UNARY_LOOP {
|
1705
|
1
|
const npy_double in1 = *(npy_double *)ip1;
|
1706
|
1
|
*(npy_double *)op1 = npy_exp(in1);
|
1707
|
|
}
|
1708
|
|
}
|
1709
|
1
|
}
|
1710
|
|
|
1711
|
|
NPY_NO_EXPORT NPY_GCC_OPT_3 void
|
1712
|
1
|
DOUBLE_log_avx512f(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(data))
|
1713
|
|
{
|
1714
|
1
|
if (!run_unary_avx512f_log_DOUBLE(args, dimensions, steps)) {
|
1715
|
1
|
UNARY_LOOP {
|
1716
|
1
|
const npy_double in1 = *(npy_double *)ip1;
|
1717
|
1
|
*(npy_double *)op1 = npy_log(in1);
|
1718
|
|
}
|
1719
|
|
}
|
1720
|
1
|
}
|
1721
|
|
|
1722
|
|
/**begin repeat
|
1723
|
|
* Float types
|
1724
|
|
* #type = npy_float, npy_double, npy_longdouble, npy_float#
|
1725
|
|
* #dtype = npy_float, npy_double, npy_longdouble, npy_half#
|
1726
|
|
* #TYPE = FLOAT, DOUBLE, LONGDOUBLE, HALF#
|
1727
|
|
* #c = f, , l, #
|
1728
|
|
* #C = F, , L, #
|
1729
|
|
* #trf = , , , npy_half_to_float#
|
1730
|
|
*/
|
1731
|
|
|
1732
|
|
/*
|
1733
|
|
* Pairwise summation, rounding error O(lg n) instead of O(n).
|
1734
|
|
* The recursion depth is O(lg n) as well.
|
1735
|
|
* when updating also update similar complex floats summation
|
1736
|
|
*/
|
1737
|
|
static @type@
|
1738
|
1
|
pairwise_sum_@TYPE@(char *a, npy_intp n, npy_intp stride)
|
1739
|
|
{
|
1740
|
1
|
if (n < 8) {
|
1741
|
|
npy_intp i;
|
1742
|
|
@type@ res = 0.;
|
1743
|
|
|
1744
|
1
|
for (i = 0; i < n; i++) {
|
1745
|
1
|
res += @trf@(*((@dtype@*)(a + i * stride)));
|
1746
|
|
}
|
1747
|
|
return res;
|
1748
|
|
}
|
1749
|
1
|
else if (n <= PW_BLOCKSIZE) {
|
1750
|
|
npy_intp i;
|
1751
|
|
@type@ r[8], res;
|
1752
|
|
|
1753
|
|
/*
|
1754
|
|
* sum a block with 8 accumulators
|
1755
|
|
* 8 times unroll reduces blocksize to 16 and allows vectorization with
|
1756
|
|
* avx without changing summation ordering
|
1757
|
|
*/
|
1758
|
1
|
r[0] = @trf@(*((@dtype@ *)(a + 0 * stride)));
|
1759
|
1
|
r[1] = @trf@(*((@dtype@ *)(a + 1 * stride)));
|
1760
|
1
|
r[2] = @trf@(*((@dtype@ *)(a + 2 * stride)));
|
1761
|
1
|
r[3] = @trf@(*((@dtype@ *)(a + 3 * stride)));
|
1762
|
1
|
r[4] = @trf@(*((@dtype@ *)(a + 4 * stride)));
|
1763
|
1
|
r[5] = @trf@(*((@dtype@ *)(a + 5 * stride)));
|
1764
|
1
|
r[6] = @trf@(*((@dtype@ *)(a + 6 * stride)));
|
1765
|
1
|
r[7] = @trf@(*((@dtype@ *)(a + 7 * stride)));
|
1766
|
|
|
1767
|
1
|
for (i = 8; i < n - (n % 8); i += 8) {
|
1768
|
|
/* small blocksizes seems to mess with hardware prefetch */
|
1769
|
1
|
NPY_PREFETCH(a + (i + 512/(npy_intp)sizeof(@dtype@))*stride, 0, 3);
|
1770
|
1
|
r[0] += @trf@(*((@dtype@ *)(a + (i + 0) * stride)));
|
1771
|
1
|
r[1] += @trf@(*((@dtype@ *)(a + (i + 1) * stride)));
|
1772
|
1
|
r[2] += @trf@(*((@dtype@ *)(a + (i + 2) * stride)));
|
1773
|
1
|
r[3] += @trf@(*((@dtype@ *)(a + (i + 3) * stride)));
|
1774
|
1
|
r[4] += @trf@(*((@dtype@ *)(a + (i + 4) * stride)));
|
1775
|
1
|
r[5] += @trf@(*((@dtype@ *)(a + (i + 5) * stride)));
|
1776
|
1
|
r[6] += @trf@(*((@dtype@ *)(a + (i + 6) * stride)));
|
1777
|
1
|
r[7] += @trf@(*((@dtype@ *)(a + (i + 7) * stride)));
|
1778
|
|
}
|
1779
|
|
|
1780
|
|
/* accumulate now to avoid stack spills for single peel loop */
|
1781
|
1
|
res = ((r[0] + r[1]) + (r[2] + r[3])) +
|
1782
|
1
|
((r[4] + r[5]) + (r[6] + r[7]));
|
1783
|
|
|
1784
|
|
/* do non multiple of 8 rest */
|
1785
|
1
|
for (; i < n; i++) {
|
1786
|
1
|
res += @trf@(*((@dtype@ *)(a + i * stride)));
|
1787
|
|
}
|
1788
|
|
return res;
|
1789
|
|
}
|
1790
|
|
else {
|
1791
|
|
/* divide by two but avoid non-multiples of unroll factor */
|
1792
|
1
|
npy_intp n2 = n / 2;
|
1793
|
|
|
1794
|
1
|
n2 -= n2 % 8;
|
1795
|
1
|
return pairwise_sum_@TYPE@(a, n2, stride) +
|
1796
|
1
|
pairwise_sum_@TYPE@(a + n2 * stride, n - n2, stride);
|
1797
|
|
}
|
1798
|
|
}
|
1799
|
|
|
1800
|
|
/**end repeat**/
|
1801
|
|
|
1802
|
|
/**begin repeat
|
1803
|
|
* Float types
|
1804
|
|
* #type = npy_float, npy_double, npy_longdouble#
|
1805
|
|
* #TYPE = FLOAT, DOUBLE, LONGDOUBLE#
|
1806
|
|
* #c = f, , l#
|
1807
|
|
* #C = F, , L#
|
1808
|
|
*/
|
1809
|
|
|
1810
|
|
/**begin repeat1
|
1811
|
|
* Arithmetic
|
1812
|
|
* # kind = add, subtract, multiply, divide#
|
1813
|
|
* # OP = +, -, *, /#
|
1814
|
|
* # PW = 1, 0, 0, 0#
|
1815
|
|
*/
|
1816
|
|
NPY_NO_EXPORT void
|
1817
|
1
|
@TYPE@_@kind@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1818
|
|
{
|
1819
|
1
|
if (IS_BINARY_REDUCE) {
|
1820
|
|
#if @PW@
|
1821
|
1
|
@type@ * iop1 = (@type@ *)args[0];
|
1822
|
1
|
npy_intp n = dimensions[0];
|
1823
|
|
|
1824
|
1
|
*iop1 @OP@= pairwise_sum_@TYPE@(args[1], n, steps[1]);
|
1825
|
|
#else
|
1826
|
1
|
BINARY_REDUCE_LOOP(@type@) {
|
1827
|
1
|
io1 @OP@= *(@type@ *)ip2;
|
1828
|
|
}
|
1829
|
1
|
*((@type@ *)iop1) = io1;
|
1830
|
|
#endif
|
1831
|
|
}
|
1832
|
1
|
else if (!run_binary_simd_@kind@_@TYPE@(args, dimensions, steps)) {
|
1833
|
1
|
BINARY_LOOP {
|
1834
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
1835
|
1
|
const @type@ in2 = *(@type@ *)ip2;
|
1836
|
1
|
*((@type@ *)op1) = in1 @OP@ in2;
|
1837
|
|
}
|
1838
|
|
}
|
1839
|
1
|
}
|
1840
|
|
/**end repeat1**/
|
1841
|
|
|
1842
|
|
/**begin repeat1
|
1843
|
|
* #kind = equal, not_equal, less, less_equal, greater, greater_equal,
|
1844
|
|
* logical_and, logical_or#
|
1845
|
|
* #OP = ==, !=, <, <=, >, >=, &&, ||#
|
1846
|
|
*/
|
1847
|
|
NPY_NO_EXPORT void
|
1848
|
1
|
@TYPE@_@kind@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1849
|
|
{
|
1850
|
1
|
if (!run_binary_simd_@kind@_@TYPE@(args, dimensions, steps)) {
|
1851
|
1
|
BINARY_LOOP {
|
1852
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
1853
|
1
|
const @type@ in2 = *(@type@ *)ip2;
|
1854
|
1
|
*((npy_bool *)op1) = in1 @OP@ in2;
|
1855
|
|
}
|
1856
|
|
}
|
1857
|
1
|
npy_clear_floatstatus_barrier((char*)dimensions);
|
1858
|
1
|
}
|
1859
|
|
/**end repeat1**/
|
1860
|
|
|
1861
|
|
NPY_NO_EXPORT void
|
1862
|
1
|
@TYPE@_logical_xor(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1863
|
|
{
|
1864
|
1
|
BINARY_LOOP {
|
1865
|
1
|
const int t1 = !!*(@type@ *)ip1;
|
1866
|
1
|
const int t2 = !!*(@type@ *)ip2;
|
1867
|
1
|
*((npy_bool *)op1) = (t1 != t2);
|
1868
|
|
}
|
1869
|
1
|
}
|
1870
|
|
|
1871
|
|
NPY_NO_EXPORT void
|
1872
|
1
|
@TYPE@_logical_not(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1873
|
|
{
|
1874
|
1
|
UNARY_LOOP {
|
1875
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
1876
|
1
|
*((npy_bool *)op1) = !in1;
|
1877
|
|
}
|
1878
|
1
|
}
|
1879
|
|
|
1880
|
|
/**begin repeat1
|
1881
|
|
* #kind = isnan, isinf, isfinite, signbit#
|
1882
|
|
* #func = npy_isnan, npy_isinf, npy_isfinite, npy_signbit#
|
1883
|
|
**/
|
1884
|
|
|
1885
|
|
/**begin repeat2
|
1886
|
|
* #ISA = , _avx512_skx#
|
1887
|
|
* #isa = simd, avx512_skx#
|
1888
|
|
**/
|
1889
|
|
NPY_NO_EXPORT void
|
1890
|
1
|
@TYPE@_@kind@@ISA@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1891
|
|
{
|
1892
|
1
|
if (!run_@kind@_@isa@_@TYPE@(args, dimensions, steps)) {
|
1893
|
1
|
UNARY_LOOP {
|
1894
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
1895
|
1
|
*((npy_bool *)op1) = @func@(in1) != 0;
|
1896
|
|
}
|
1897
|
|
}
|
1898
|
1
|
npy_clear_floatstatus_barrier((char*)dimensions);
|
1899
|
1
|
}
|
1900
|
|
/**end repeat2**/
|
1901
|
|
/**end repeat1**/
|
1902
|
|
|
1903
|
|
NPY_NO_EXPORT void
|
1904
|
1
|
@TYPE@_spacing(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1905
|
|
{
|
1906
|
1
|
UNARY_LOOP {
|
1907
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
1908
|
1
|
*((@type@ *)op1) = npy_spacing@c@(in1);
|
1909
|
|
}
|
1910
|
1
|
}
|
1911
|
|
|
1912
|
|
NPY_NO_EXPORT void
|
1913
|
1
|
@TYPE@_copysign(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1914
|
|
{
|
1915
|
1
|
BINARY_LOOP {
|
1916
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
1917
|
1
|
const @type@ in2 = *(@type@ *)ip2;
|
1918
|
1
|
*((@type@ *)op1)= npy_copysign@c@(in1, in2);
|
1919
|
|
}
|
1920
|
1
|
}
|
1921
|
|
|
1922
|
|
NPY_NO_EXPORT void
|
1923
|
1
|
@TYPE@_nextafter(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1924
|
|
{
|
1925
|
1
|
BINARY_LOOP {
|
1926
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
1927
|
1
|
const @type@ in2 = *(@type@ *)ip2;
|
1928
|
1
|
*((@type@ *)op1)= npy_nextafter@c@(in1, in2);
|
1929
|
|
}
|
1930
|
1
|
}
|
1931
|
|
|
1932
|
|
/**begin repeat1
|
1933
|
|
* #kind = maximum, minimum#
|
1934
|
|
* #OP = >=, <=#
|
1935
|
|
**/
|
1936
|
|
NPY_NO_EXPORT void
|
1937
|
1
|
@TYPE@_@kind@_avx512f(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1938
|
|
{
|
1939
|
|
/* */
|
1940
|
1
|
if (IS_BINARY_REDUCE) {
|
1941
|
1
|
if (!run_unary_reduce_simd_@kind@_@TYPE@(args, dimensions, steps)) {
|
1942
|
1
|
BINARY_REDUCE_LOOP(@type@) {
|
1943
|
1
|
const @type@ in2 = *(@type@ *)ip2;
|
1944
|
|
/* Order of operations important for MSVC 2015 */
|
1945
|
1
|
io1 = (io1 @OP@ in2 || npy_isnan(io1)) ? io1 : in2;
|
1946
|
|
}
|
1947
|
1
|
*((@type@ *)iop1) = io1;
|
1948
|
|
}
|
1949
|
|
}
|
1950
|
|
else {
|
1951
|
1
|
if (!run_binary_avx512f_@kind@_@TYPE@(args, dimensions, steps)) {
|
1952
|
1
|
BINARY_LOOP {
|
1953
|
1
|
@type@ in1 = *(@type@ *)ip1;
|
1954
|
1
|
const @type@ in2 = *(@type@ *)ip2;
|
1955
|
|
/* Order of operations important for MSVC 2015 */
|
1956
|
1
|
in1 = (in1 @OP@ in2 || npy_isnan(in1)) ? in1 : in2;
|
1957
|
1
|
*((@type@ *)op1) = in1;
|
1958
|
|
}
|
1959
|
|
}
|
1960
|
|
}
|
1961
|
1
|
npy_clear_floatstatus_barrier((char*)dimensions);
|
1962
|
1
|
}
|
1963
|
|
|
1964
|
|
NPY_NO_EXPORT void
|
1965
|
1
|
@TYPE@_@kind@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1966
|
|
{
|
1967
|
|
/* */
|
1968
|
1
|
if (IS_BINARY_REDUCE) {
|
1969
|
1
|
if (!run_unary_reduce_simd_@kind@_@TYPE@(args, dimensions, steps)) {
|
1970
|
1
|
BINARY_REDUCE_LOOP(@type@) {
|
1971
|
1
|
const @type@ in2 = *(@type@ *)ip2;
|
1972
|
|
/* Order of operations important for MSVC 2015 */
|
1973
|
1
|
io1 = (io1 @OP@ in2 || npy_isnan(io1)) ? io1 : in2;
|
1974
|
|
}
|
1975
|
1
|
*((@type@ *)iop1) = io1;
|
1976
|
|
}
|
1977
|
|
}
|
1978
|
|
else {
|
1979
|
1
|
BINARY_LOOP {
|
1980
|
1
|
@type@ in1 = *(@type@ *)ip1;
|
1981
|
1
|
const @type@ in2 = *(@type@ *)ip2;
|
1982
|
|
/* Order of operations important for MSVC 2015 */
|
1983
|
1
|
in1 = (in1 @OP@ in2 || npy_isnan(in1)) ? in1 : in2;
|
1984
|
1
|
*((@type@ *)op1) = in1;
|
1985
|
|
}
|
1986
|
|
}
|
1987
|
1
|
npy_clear_floatstatus_barrier((char*)dimensions);
|
1988
|
1
|
}
|
1989
|
|
/**end repeat1**/
|
1990
|
|
|
1991
|
|
/**begin repeat1
|
1992
|
|
* #kind = fmax, fmin#
|
1993
|
|
* #OP = >=, <=#
|
1994
|
|
**/
|
1995
|
|
NPY_NO_EXPORT void
|
1996
|
1
|
@TYPE@_@kind@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
1997
|
|
{
|
1998
|
|
/* */
|
1999
|
1
|
if (IS_BINARY_REDUCE) {
|
2000
|
1
|
BINARY_REDUCE_LOOP(@type@) {
|
2001
|
1
|
const @type@ in2 = *(@type@ *)ip2;
|
2002
|
|
/* Order of operations important for MSVC 2015 */
|
2003
|
1
|
io1 = (io1 @OP@ in2 || npy_isnan(in2)) ? io1 : in2;
|
2004
|
|
}
|
2005
|
1
|
*((@type@ *)iop1) = io1;
|
2006
|
|
}
|
2007
|
|
else {
|
2008
|
1
|
BINARY_LOOP {
|
2009
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
2010
|
1
|
const @type@ in2 = *(@type@ *)ip2;
|
2011
|
|
/* Order of operations important for MSVC 2015 */
|
2012
|
1
|
*((@type@ *)op1) = (in1 @OP@ in2 || npy_isnan(in2)) ? in1 : in2;
|
2013
|
|
}
|
2014
|
|
}
|
2015
|
1
|
npy_clear_floatstatus_barrier((char*)dimensions);
|
2016
|
1
|
}
|
2017
|
|
/**end repeat1**/
|
2018
|
|
|
2019
|
|
NPY_NO_EXPORT void
|
2020
|
1
|
@TYPE@_floor_divide(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2021
|
|
{
|
2022
|
1
|
BINARY_LOOP {
|
2023
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
2024
|
1
|
const @type@ in2 = *(@type@ *)ip2;
|
2025
|
|
@type@ mod;
|
2026
|
1
|
*((@type@ *)op1) = npy_divmod@c@(in1, in2, &mod);
|
2027
|
|
}
|
2028
|
1
|
}
|
2029
|
|
|
2030
|
|
NPY_NO_EXPORT void
|
2031
|
1
|
@TYPE@_remainder(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2032
|
|
{
|
2033
|
1
|
BINARY_LOOP {
|
2034
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
2035
|
1
|
const @type@ in2 = *(@type@ *)ip2;
|
2036
|
1
|
npy_divmod@c@(in1, in2, (@type@ *)op1);
|
2037
|
|
}
|
2038
|
1
|
}
|
2039
|
|
|
2040
|
|
NPY_NO_EXPORT void
|
2041
|
1
|
@TYPE@_divmod(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2042
|
|
{
|
2043
|
1
|
BINARY_LOOP_TWO_OUT {
|
2044
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
2045
|
1
|
const @type@ in2 = *(@type@ *)ip2;
|
2046
|
1
|
*((@type@ *)op1) = npy_divmod@c@(in1, in2, (@type@ *)op2);
|
2047
|
|
}
|
2048
|
1
|
}
|
2049
|
|
|
2050
|
|
NPY_NO_EXPORT void
|
2051
|
1
|
@TYPE@_square(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(data))
|
2052
|
|
{
|
2053
|
1
|
char * margs[] = {args[0], args[0], args[1]};
|
2054
|
1
|
npy_intp msteps[] = {steps[0], steps[0], steps[1]};
|
2055
|
1
|
if (!run_binary_simd_multiply_@TYPE@(margs, dimensions, msteps)) {
|
2056
|
1
|
UNARY_LOOP {
|
2057
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
2058
|
1
|
*((@type@ *)op1) = in1*in1;
|
2059
|
|
}
|
2060
|
|
}
|
2061
|
1
|
}
|
2062
|
|
|
2063
|
|
NPY_NO_EXPORT void
|
2064
|
1
|
@TYPE@_reciprocal(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(data))
|
2065
|
|
{
|
2066
|
1
|
@type@ one = 1.@c@;
|
2067
|
1
|
char * margs[] = {(char*)&one, args[0], args[1]};
|
2068
|
1
|
npy_intp msteps[] = {0, steps[0], steps[1]};
|
2069
|
1
|
if (!run_binary_simd_divide_@TYPE@(margs, dimensions, msteps)) {
|
2070
|
1
|
UNARY_LOOP {
|
2071
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
2072
|
1
|
*((@type@ *)op1) = 1/in1;
|
2073
|
|
}
|
2074
|
|
}
|
2075
|
1
|
}
|
2076
|
|
|
2077
|
|
NPY_NO_EXPORT void
|
2078
|
1
|
@TYPE@__ones_like(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(data))
|
2079
|
|
{
|
2080
|
1
|
OUTPUT_LOOP {
|
2081
|
1
|
*((@type@ *)op1) = 1;
|
2082
|
|
}
|
2083
|
1
|
}
|
2084
|
|
|
2085
|
|
NPY_NO_EXPORT void
|
2086
|
1
|
@TYPE@_conjugate(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2087
|
|
{
|
2088
|
1
|
UNARY_LOOP {
|
2089
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
2090
|
1
|
*((@type@ *)op1) = in1;
|
2091
|
|
}
|
2092
|
1
|
}
|
2093
|
|
|
2094
|
|
NPY_NO_EXPORT void
|
2095
|
1
|
@TYPE@_absolute(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2096
|
|
{
|
2097
|
1
|
if (!run_unary_simd_absolute_@TYPE@(args, dimensions, steps)) {
|
2098
|
1
|
UNARY_LOOP {
|
2099
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
2100
|
1
|
const @type@ tmp = in1 > 0 ? in1 : -in1;
|
2101
|
|
/* add 0 to clear -0.0 */
|
2102
|
1
|
*((@type@ *)op1) = tmp + 0;
|
2103
|
|
}
|
2104
|
|
}
|
2105
|
1
|
npy_clear_floatstatus_barrier((char*)dimensions);
|
2106
|
1
|
}
|
2107
|
|
|
2108
|
|
NPY_NO_EXPORT void
|
2109
|
1
|
@TYPE@_negative(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2110
|
|
{
|
2111
|
1
|
if (!run_unary_simd_negative_@TYPE@(args, dimensions, steps)) {
|
2112
|
1
|
UNARY_LOOP {
|
2113
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
2114
|
1
|
*((@type@ *)op1) = -in1;
|
2115
|
|
}
|
2116
|
|
}
|
2117
|
1
|
}
|
2118
|
|
|
2119
|
|
NPY_NO_EXPORT void
|
2120
|
1
|
@TYPE@_positive(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2121
|
|
{
|
2122
|
1
|
UNARY_LOOP {
|
2123
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
2124
|
1
|
*((@type@ *)op1) = +in1;
|
2125
|
|
}
|
2126
|
1
|
}
|
2127
|
|
|
2128
|
|
NPY_NO_EXPORT void
|
2129
|
1
|
@TYPE@_sign(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2130
|
|
{
|
2131
|
|
/* Sign of nan is nan */
|
2132
|
1
|
UNARY_LOOP {
|
2133
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
2134
|
1
|
*((@type@ *)op1) = in1 > 0 ? 1 : (in1 < 0 ? -1 : (in1 == 0 ? 0 : in1));
|
2135
|
|
}
|
2136
|
1
|
npy_clear_floatstatus_barrier((char*)dimensions);
|
2137
|
1
|
}
|
2138
|
|
|
2139
|
|
NPY_NO_EXPORT void
|
2140
|
1
|
@TYPE@_modf(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2141
|
|
{
|
2142
|
1
|
UNARY_LOOP_TWO_OUT {
|
2143
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
2144
|
1
|
*((@type@ *)op1) = npy_modf@c@(in1, (@type@ *)op2);
|
2145
|
|
}
|
2146
|
1
|
}
|
2147
|
|
|
2148
|
|
NPY_NO_EXPORT void
|
2149
|
1
|
@TYPE@_frexp(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2150
|
|
{
|
2151
|
1
|
UNARY_LOOP_TWO_OUT {
|
2152
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
2153
|
1
|
*((@type@ *)op1) = npy_frexp@c@(in1, (int *)op2);
|
2154
|
|
}
|
2155
|
1
|
}
|
2156
|
|
|
2157
|
|
NPY_NO_EXPORT void
|
2158
|
1
|
@TYPE@_frexp_avx512_skx(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)
|
2159
|
|
{
|
2160
|
1
|
if (!run_unary_two_out_avx512_skx_frexp_@TYPE@(args, dimensions, steps)) {
|
2161
|
1
|
@TYPE@_frexp(args, dimensions, steps, func);
|
2162
|
|
}
|
2163
|
1
|
}
|
2164
|
|
|
2165
|
|
NPY_NO_EXPORT void
|
2166
|
1
|
@TYPE@_ldexp(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2167
|
|
{
|
2168
|
1
|
BINARY_LOOP {
|
2169
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
2170
|
1
|
const int in2 = *(int *)ip2;
|
2171
|
1
|
*((@type@ *)op1) = npy_ldexp@c@(in1, in2);
|
2172
|
|
}
|
2173
|
1
|
}
|
2174
|
|
|
2175
|
|
NPY_NO_EXPORT void
|
2176
|
1
|
@TYPE@_ldexp_avx512_skx(char **args, const npy_intp *dimensions, const npy_intp *steps, void *func)
|
2177
|
|
{
|
2178
|
1
|
if (!run_binary_avx512_skx_ldexp_@TYPE@(args, dimensions, steps)) {
|
2179
|
1
|
@TYPE@_ldexp(args, dimensions, steps, func);
|
2180
|
|
}
|
2181
|
1
|
}
|
2182
|
|
|
2183
|
|
NPY_NO_EXPORT void
|
2184
|
1
|
@TYPE@_ldexp_long(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2185
|
|
{
|
2186
|
|
/*
|
2187
|
|
* Additional loop to handle npy_long integer inputs (cf. #866, #1633).
|
2188
|
|
* npy_long != npy_int on many 64-bit platforms, so we need this second loop
|
2189
|
|
* to handle the default integer type.
|
2190
|
|
*/
|
2191
|
1
|
BINARY_LOOP {
|
2192
|
1
|
const @type@ in1 = *(@type@ *)ip1;
|
2193
|
1
|
const long in2 = *(long *)ip2;
|
2194
|
1
|
if (((int)in2) == in2) {
|
2195
|
|
/* Range OK */
|
2196
|
1
|
*((@type@ *)op1) = npy_ldexp@c@(in1, ((int)in2));
|
2197
|
|
}
|
2198
|
|
else {
|
2199
|
|
/*
|
2200
|
|
* Outside npy_int range -- also ldexp will overflow in this case,
|
2201
|
|
* given that exponent has less bits than npy_int.
|
2202
|
|
*/
|
2203
|
1
|
if (in2 > 0) {
|
2204
|
1
|
*((@type@ *)op1) = npy_ldexp@c@(in1, NPY_MAX_INT);
|
2205
|
|
}
|
2206
|
|
else {
|
2207
|
1
|
*((@type@ *)op1) = npy_ldexp@c@(in1, NPY_MIN_INT);
|
2208
|
|
}
|
2209
|
|
}
|
2210
|
|
}
|
2211
|
1
|
}
|
2212
|
|
|
2213
|
|
#define @TYPE@_true_divide @TYPE@_divide
|
2214
|
|
|
2215
|
|
/**end repeat**/
|
2216
|
|
|
2217
|
|
/*
|
2218
|
|
*****************************************************************************
|
2219
|
|
** HALF-FLOAT LOOPS **
|
2220
|
|
*****************************************************************************
|
2221
|
|
*/
|
2222
|
|
|
2223
|
|
|
2224
|
|
/**begin repeat
|
2225
|
|
* Arithmetic
|
2226
|
|
* # kind = add, subtract, multiply, divide#
|
2227
|
|
* # OP = +, -, *, /#
|
2228
|
|
* # PW = 1, 0, 0, 0#
|
2229
|
|
*/
|
2230
|
|
NPY_NO_EXPORT void
|
2231
|
1
|
HALF_@kind@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2232
|
|
{
|
2233
|
1
|
if (IS_BINARY_REDUCE) {
|
2234
|
1
|
char *iop1 = args[0];
|
2235
|
1
|
float io1 = npy_half_to_float(*(npy_half *)iop1);
|
2236
|
|
#if @PW@
|
2237
|
1
|
npy_intp n = dimensions[0];
|
2238
|
|
|
2239
|
1
|
io1 @OP@= pairwise_sum_HALF(args[1], n, steps[1]);
|
2240
|
|
#else
|
2241
|
1
|
BINARY_REDUCE_LOOP_INNER {
|
2242
|
1
|
io1 @OP@= npy_half_to_float(*(npy_half *)ip2);
|
2243
|
|
}
|
2244
|
|
#endif
|
2245
|
1
|
*((npy_half *)iop1) = npy_float_to_half(io1);
|
2246
|
|
}
|
2247
|
|
else {
|
2248
|
1
|
BINARY_LOOP {
|
2249
|
1
|
const float in1 = npy_half_to_float(*(npy_half *)ip1);
|
2250
|
1
|
const float in2 = npy_half_to_float(*(npy_half *)ip2);
|
2251
|
1
|
*((npy_half *)op1) = npy_float_to_half(in1 @OP@ in2);
|
2252
|
|
}
|
2253
|
|
}
|
2254
|
1
|
}
|
2255
|
|
/**end repeat**/
|
2256
|
|
|
2257
|
|
#define _HALF_LOGICAL_AND(a,b) (!npy_half_iszero(a) && !npy_half_iszero(b))
|
2258
|
|
#define _HALF_LOGICAL_OR(a,b) (!npy_half_iszero(a) || !npy_half_iszero(b))
|
2259
|
|
/**begin repeat
|
2260
|
|
* #kind = equal, not_equal, less, less_equal, greater,
|
2261
|
|
* greater_equal, logical_and, logical_or#
|
2262
|
|
* #OP = npy_half_eq, npy_half_ne, npy_half_lt, npy_half_le, npy_half_gt,
|
2263
|
|
* npy_half_ge, _HALF_LOGICAL_AND, _HALF_LOGICAL_OR#
|
2264
|
|
*/
|
2265
|
|
NPY_NO_EXPORT void
|
2266
|
1
|
HALF_@kind@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2267
|
|
{
|
2268
|
1
|
BINARY_LOOP {
|
2269
|
1
|
const npy_half in1 = *(npy_half *)ip1;
|
2270
|
1
|
const npy_half in2 = *(npy_half *)ip2;
|
2271
|
1
|
*((npy_bool *)op1) = @OP@(in1, in2);
|
2272
|
|
}
|
2273
|
1
|
}
|
2274
|
|
/**end repeat**/
|
2275
|
|
#undef _HALF_LOGICAL_AND
|
2276
|
|
#undef _HALF_LOGICAL_OR
|
2277
|
|
|
2278
|
|
NPY_NO_EXPORT void
|
2279
|
1
|
HALF_logical_xor(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2280
|
|
{
|
2281
|
1
|
BINARY_LOOP {
|
2282
|
1
|
const int in1 = !npy_half_iszero(*(npy_half *)ip1);
|
2283
|
1
|
const int in2 = !npy_half_iszero(*(npy_half *)ip2);
|
2284
|
1
|
*((npy_bool *)op1) = (in1 != in2);
|
2285
|
|
}
|
2286
|
1
|
}
|
2287
|
|
|
2288
|
|
NPY_NO_EXPORT void
|
2289
|
1
|
HALF_logical_not(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2290
|
|
{
|
2291
|
1
|
UNARY_LOOP {
|
2292
|
1
|
const npy_half in1 = *(npy_half *)ip1;
|
2293
|
1
|
*((npy_bool *)op1) = npy_half_iszero(in1);
|
2294
|
|
}
|
2295
|
1
|
}
|
2296
|
|
|
2297
|
|
/**begin repeat
|
2298
|
|
* #kind = isnan, isinf, isfinite, signbit#
|
2299
|
|
* #func = npy_half_isnan, npy_half_isinf, npy_half_isfinite, npy_half_signbit#
|
2300
|
|
**/
|
2301
|
|
NPY_NO_EXPORT void
|
2302
|
1
|
HALF_@kind@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2303
|
|
{
|
2304
|
1
|
UNARY_LOOP {
|
2305
|
1
|
const npy_half in1 = *(npy_half *)ip1;
|
2306
|
1
|
*((npy_bool *)op1) = @func@(in1) != 0;
|
2307
|
|
}
|
2308
|
1
|
npy_clear_floatstatus_barrier((char*)dimensions);
|
2309
|
1
|
}
|
2310
|
|
/**end repeat**/
|
2311
|
|
|
2312
|
|
NPY_NO_EXPORT void
|
2313
|
1
|
HALF_spacing(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2314
|
|
{
|
2315
|
1
|
UNARY_LOOP {
|
2316
|
1
|
const npy_half in1 = *(npy_half *)ip1;
|
2317
|
1
|
*((npy_half *)op1) = npy_half_spacing(in1);
|
2318
|
|
}
|
2319
|
1
|
}
|
2320
|
|
|
2321
|
|
NPY_NO_EXPORT void
|
2322
|
1
|
HALF_copysign(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2323
|
|
{
|
2324
|
1
|
BINARY_LOOP {
|
2325
|
1
|
const npy_half in1 = *(npy_half *)ip1;
|
2326
|
1
|
const npy_half in2 = *(npy_half *)ip2;
|
2327
|
1
|
*((npy_half *)op1)= npy_half_copysign(in1, in2);
|
2328
|
|
}
|
2329
|
1
|
}
|
2330
|
|
|
2331
|
|
NPY_NO_EXPORT void
|
2332
|
1
|
HALF_nextafter(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2333
|
|
{
|
2334
|
1
|
BINARY_LOOP {
|
2335
|
1
|
const npy_half in1 = *(npy_half *)ip1;
|
2336
|
1
|
const npy_half in2 = *(npy_half *)ip2;
|
2337
|
1
|
*((npy_half *)op1)= npy_half_nextafter(in1, in2);
|
2338
|
|
}
|
2339
|
1
|
}
|
2340
|
|
|
2341
|
|
/**begin repeat
|
2342
|
|
* #kind = maximum, minimum#
|
2343
|
|
* #OP = npy_half_ge, npy_half_le#
|
2344
|
|
**/
|
2345
|
|
NPY_NO_EXPORT void
|
2346
|
1
|
HALF_@kind@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2347
|
|
{
|
2348
|
|
/* */
|
2349
|
1
|
BINARY_LOOP {
|
2350
|
1
|
const npy_half in1 = *(npy_half *)ip1;
|
2351
|
1
|
const npy_half in2 = *(npy_half *)ip2;
|
2352
|
1
|
*((npy_half *)op1) = (@OP@(in1, in2) || npy_half_isnan(in1)) ? in1 : in2;
|
2353
|
|
}
|
2354
|
|
/* npy_half_isnan will never set floatstatus_invalid, so do not clear */
|
2355
|
1
|
}
|
2356
|
|
/**end repeat**/
|
2357
|
|
|
2358
|
|
/**begin repeat
|
2359
|
|
* #kind = fmax, fmin#
|
2360
|
|
* #OP = npy_half_ge, npy_half_le#
|
2361
|
|
**/
|
2362
|
|
NPY_NO_EXPORT void
|
2363
|
1
|
HALF_@kind@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2364
|
|
{
|
2365
|
|
/* */
|
2366
|
1
|
BINARY_LOOP {
|
2367
|
1
|
const npy_half in1 = *(npy_half *)ip1;
|
2368
|
1
|
const npy_half in2 = *(npy_half *)ip2;
|
2369
|
1
|
*((npy_half *)op1) = (@OP@(in1, in2) || npy_half_isnan(in2)) ? in1 : in2;
|
2370
|
|
}
|
2371
|
|
/* npy_half_isnan will never set floatstatus_invalid, so do not clear */
|
2372
|
1
|
}
|
2373
|
|
/**end repeat**/
|
2374
|
|
|
2375
|
|
NPY_NO_EXPORT void
|
2376
|
1
|
HALF_floor_divide(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2377
|
|
{
|
2378
|
1
|
BINARY_LOOP {
|
2379
|
1
|
const npy_half in1 = *(npy_half *)ip1;
|
2380
|
1
|
const npy_half in2 = *(npy_half *)ip2;
|
2381
|
|
npy_half mod;
|
2382
|
1
|
*((npy_half *)op1) = npy_half_divmod(in1, in2, &mod);
|
2383
|
|
}
|
2384
|
1
|
}
|
2385
|
|
|
2386
|
|
NPY_NO_EXPORT void
|
2387
|
1
|
HALF_remainder(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2388
|
|
{
|
2389
|
1
|
BINARY_LOOP {
|
2390
|
1
|
const npy_half in1 = *(npy_half *)ip1;
|
2391
|
1
|
const npy_half in2 = *(npy_half *)ip2;
|
2392
|
1
|
npy_half_divmod(in1, in2, (npy_half *)op1);
|
2393
|
|
}
|
2394
|
1
|
}
|
2395
|
|
|
2396
|
|
NPY_NO_EXPORT void
|
2397
|
1
|
HALF_divmod(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2398
|
|
{
|
2399
|
1
|
BINARY_LOOP_TWO_OUT {
|
2400
|
1
|
const npy_half in1 = *(npy_half *)ip1;
|
2401
|
1
|
const npy_half in2 = *(npy_half *)ip2;
|
2402
|
1
|
*((npy_half *)op1) = npy_half_divmod(in1, in2, (npy_half *)op2);
|
2403
|
|
}
|
2404
|
1
|
}
|
2405
|
|
|
2406
|
|
NPY_NO_EXPORT void
|
2407
|
1
|
HALF_square(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(data))
|
2408
|
|
{
|
2409
|
1
|
UNARY_LOOP {
|
2410
|
1
|
const float in1 = npy_half_to_float(*(npy_half *)ip1);
|
2411
|
1
|
*((npy_half *)op1) = npy_float_to_half(in1*in1);
|
2412
|
|
}
|
2413
|
1
|
}
|
2414
|
|
|
2415
|
|
NPY_NO_EXPORT void
|
2416
|
1
|
HALF_reciprocal(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(data))
|
2417
|
|
{
|
2418
|
1
|
UNARY_LOOP {
|
2419
|
1
|
const float in1 = npy_half_to_float(*(npy_half *)ip1);
|
2420
|
1
|
*((npy_half *)op1) = npy_float_to_half(1/in1);
|
2421
|
|
}
|
2422
|
1
|
}
|
2423
|
|
|
2424
|
|
NPY_NO_EXPORT void
|
2425
|
0
|
HALF__ones_like(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(data))
|
2426
|
|
{
|
2427
|
0
|
OUTPUT_LOOP {
|
2428
|
0
|
*((npy_half *)op1) = NPY_HALF_ONE;
|
2429
|
|
}
|
2430
|
0
|
}
|
2431
|
|
|
2432
|
|
NPY_NO_EXPORT void
|
2433
|
1
|
HALF_conjugate(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2434
|
|
{
|
2435
|
1
|
UNARY_LOOP {
|
2436
|
1
|
const npy_half in1 = *(npy_half *)ip1;
|
2437
|
1
|
*((npy_half *)op1) = in1;
|
2438
|
|
}
|
2439
|
1
|
}
|
2440
|
|
|
2441
|
|
NPY_NO_EXPORT NPY_GCC_OPT_3 void
|
2442
|
1
|
HALF_absolute(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2443
|
|
{
|
2444
|
1
|
UNARY_LOOP_FAST(npy_half, npy_half, *out = in&0x7fffu);
|
2445
|
1
|
}
|
2446
|
|
|
2447
|
|
NPY_NO_EXPORT void
|
2448
|
1
|
HALF_negative(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2449
|
|
{
|
2450
|
1
|
UNARY_LOOP {
|
2451
|
1
|
const npy_half in1 = *(npy_half *)ip1;
|
2452
|
1
|
*((npy_half *)op1) = in1^0x8000u;
|
2453
|
|
}
|
2454
|
1
|
}
|
2455
|
|
|
2456
|
|
NPY_NO_EXPORT void
|
2457
|
1
|
HALF_positive(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2458
|
|
{
|
2459
|
1
|
UNARY_LOOP {
|
2460
|
1
|
const npy_half in1 = *(npy_half *)ip1;
|
2461
|
1
|
*((npy_half *)op1) = +in1;
|
2462
|
|
}
|
2463
|
1
|
}
|
2464
|
|
|
2465
|
|
NPY_NO_EXPORT void
|
2466
|
1
|
HALF_sign(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2467
|
|
{
|
2468
|
|
/* Sign of nan is nan */
|
2469
|
1
|
UNARY_LOOP {
|
2470
|
1
|
const npy_half in1 = *(npy_half *)ip1;
|
2471
|
1
|
*((npy_half *)op1) = npy_half_isnan(in1) ? in1 :
|
2472
|
|
(((in1&0x7fffu) == 0) ? 0 :
|
2473
|
1
|
(((in1&0x8000u) == 0) ? NPY_HALF_ONE : NPY_HALF_NEGONE));
|
2474
|
|
}
|
2475
|
1
|
}
|
2476
|
|
|
2477
|
|
NPY_NO_EXPORT void
|
2478
|
1
|
HALF_modf(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2479
|
|
{
|
2480
|
|
float temp;
|
2481
|
|
|
2482
|
1
|
UNARY_LOOP_TWO_OUT {
|
2483
|
1
|
const float in1 = npy_half_to_float(*(npy_half *)ip1);
|
2484
|
1
|
*((npy_half *)op1) = npy_float_to_half(npy_modff(in1, &temp));
|
2485
|
1
|
*((npy_half *)op2) = npy_float_to_half(temp);
|
2486
|
|
}
|
2487
|
1
|
}
|
2488
|
|
|
2489
|
|
NPY_NO_EXPORT void
|
2490
|
1
|
HALF_frexp(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2491
|
|
{
|
2492
|
1
|
UNARY_LOOP_TWO_OUT {
|
2493
|
1
|
const float in1 = npy_half_to_float(*(npy_half *)ip1);
|
2494
|
1
|
*((npy_half *)op1) = npy_float_to_half(npy_frexpf(in1, (int *)op2));
|
2495
|
|
}
|
2496
|
1
|
}
|
2497
|
|
|
2498
|
|
NPY_NO_EXPORT void
|
2499
|
1
|
HALF_ldexp(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2500
|
|
{
|
2501
|
1
|
BINARY_LOOP {
|
2502
|
1
|
const float in1 = npy_half_to_float(*(npy_half *)ip1);
|
2503
|
1
|
const int in2 = *(int *)ip2;
|
2504
|
1
|
*((npy_half *)op1) = npy_float_to_half(npy_ldexpf(in1, in2));
|
2505
|
|
}
|
2506
|
1
|
}
|
2507
|
|
|
2508
|
|
NPY_NO_EXPORT void
|
2509
|
1
|
HALF_ldexp_long(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2510
|
|
{
|
2511
|
|
/*
|
2512
|
|
* Additional loop to handle npy_long integer inputs (cf. #866, #1633).
|
2513
|
|
* npy_long != npy_int on many 64-bit platforms, so we need this second loop
|
2514
|
|
* to handle the default integer type.
|
2515
|
|
*/
|
2516
|
1
|
BINARY_LOOP {
|
2517
|
1
|
const float in1 = npy_half_to_float(*(npy_half *)ip1);
|
2518
|
1
|
const long in2 = *(long *)ip2;
|
2519
|
1
|
if (((int)in2) == in2) {
|
2520
|
|
/* Range OK */
|
2521
|
1
|
*((npy_half *)op1) = npy_float_to_half(npy_ldexpf(in1, ((int)in2)));
|
2522
|
|
}
|
2523
|
|
else {
|
2524
|
|
/*
|
2525
|
|
* Outside npy_int range -- also ldexp will overflow in this case,
|
2526
|
|
* given that exponent has less bits than npy_int.
|
2527
|
|
*/
|
2528
|
0
|
if (in2 > 0) {
|
2529
|
0
|
*((npy_half *)op1) = npy_float_to_half(npy_ldexpf(in1, NPY_MAX_INT));
|
2530
|
|
}
|
2531
|
|
else {
|
2532
|
0
|
*((npy_half *)op1) = npy_float_to_half(npy_ldexpf(in1, NPY_MIN_INT));
|
2533
|
|
}
|
2534
|
|
}
|
2535
|
|
}
|
2536
|
1
|
}
|
2537
|
|
|
2538
|
|
#define HALF_true_divide HALF_divide
|
2539
|
|
|
2540
|
|
|
2541
|
|
/*
|
2542
|
|
*****************************************************************************
|
2543
|
|
** COMPLEX LOOPS **
|
2544
|
|
*****************************************************************************
|
2545
|
|
*/
|
2546
|
|
|
2547
|
|
#define CGE(xr,xi,yr,yi) ((xr > yr && !npy_isnan(xi) && !npy_isnan(yi)) \
|
2548
|
|
|| (xr == yr && xi >= yi))
|
2549
|
|
#define CLE(xr,xi,yr,yi) ((xr < yr && !npy_isnan(xi) && !npy_isnan(yi)) \
|
2550
|
|
|| (xr == yr && xi <= yi))
|
2551
|
|
#define CGT(xr,xi,yr,yi) ((xr > yr && !npy_isnan(xi) && !npy_isnan(yi)) \
|
2552
|
|
|| (xr == yr && xi > yi))
|
2553
|
|
#define CLT(xr,xi,yr,yi) ((xr < yr && !npy_isnan(xi) && !npy_isnan(yi)) \
|
2554
|
|
|| (xr == yr && xi < yi))
|
2555
|
|
#define CEQ(xr,xi,yr,yi) (xr == yr && xi == yi)
|
2556
|
|
#define CNE(xr,xi,yr,yi) (xr != yr || xi != yi)
|
2557
|
|
|
2558
|
|
/**begin repeat
|
2559
|
|
* complex types
|
2560
|
|
* #TYPE = CFLOAT, CDOUBLE, CLONGDOUBLE#
|
2561
|
|
* #ftype = npy_float, npy_double, npy_longdouble#
|
2562
|
|
* #c = f, , l#
|
2563
|
|
* #C = F, , L#
|
2564
|
|
* #SIMD = 1, 1, 0#
|
2565
|
|
*/
|
2566
|
|
|
2567
|
|
/* similar to pairwise sum of real floats */
|
2568
|
|
static void
|
2569
|
1
|
pairwise_sum_@TYPE@(@ftype@ *rr, @ftype@ * ri, char * a, npy_intp n,
|
2570
|
|
npy_intp stride)
|
2571
|
|
{
|
2572
|
|
assert(n % 2 == 0);
|
2573
|
1
|
if (n < 8) {
|
2574
|
|
npy_intp i;
|
2575
|
|
|
2576
|
1
|
*rr = 0.;
|
2577
|
1
|
*ri = 0.;
|
2578
|
1
|
for (i = 0; i < n; i += 2) {
|
2579
|
1
|
*rr += *((@ftype@ *)(a + i * stride + 0));
|
2580
|
1
|
*ri += *((@ftype@ *)(a + i * stride + sizeof(@ftype@)));
|
2581
|
|
}
|
2582
|
|
return;
|
2583
|
|
}
|
2584
|
1
|
else if (n <= PW_BLOCKSIZE) {
|
2585
|
|
npy_intp i;
|
2586
|
|
@ftype@ r[8];
|
2587
|
|
|
2588
|
|
/*
|
2589
|
|
* sum a block with 8 accumulators
|
2590
|
|
* 8 times unroll reduces blocksize to 16 and allows vectorization with
|
2591
|
|
* avx without changing summation ordering
|
2592
|
|
*/
|
2593
|
1
|
r[0] = *((@ftype@ *)(a + 0 * stride));
|
2594
|
1
|
r[1] = *((@ftype@ *)(a + 0 * stride + sizeof(@ftype@)));
|
2595
|
1
|
r[2] = *((@ftype@ *)(a + 2 * stride));
|
2596
|
1
|
r[3] = *((@ftype@ *)(a + 2 * stride + sizeof(@ftype@)));
|
2597
|
1
|
r[4] = *((@ftype@ *)(a + 4 * stride));
|
2598
|
1
|
r[5] = *((@ftype@ *)(a + 4 * stride + sizeof(@ftype@)));
|
2599
|
1
|
r[6] = *((@ftype@ *)(a + 6 * stride));
|
2600
|
1
|
r[7] = *((@ftype@ *)(a + 6 * stride + sizeof(@ftype@)));
|
2601
|
|
|
2602
|
1
|
for (i = 8; i < n - (n % 8); i += 8) {
|
2603
|
|
/* small blocksizes seems to mess with hardware prefetch */
|
2604
|
1
|
NPY_PREFETCH(a + (i + 512/(npy_intp)sizeof(@ftype@))*stride, 0, 3);
|
2605
|
1
|
r[0] += *((@ftype@ *)(a + (i + 0) * stride));
|
2606
|
1
|
r[1] += *((@ftype@ *)(a + (i + 0) * stride + sizeof(@ftype@)));
|
2607
|
1
|
r[2] += *((@ftype@ *)(a + (i + 2) * stride));
|
2608
|
1
|
r[3] += *((@ftype@ *)(a + (i + 2) * stride + sizeof(@ftype@)));
|
2609
|
1
|
r[4] += *((@ftype@ *)(a + (i + 4) * stride));
|
2610
|
1
|
r[5] += *((@ftype@ *)(a + (i + 4) * stride + sizeof(@ftype@)));
|
2611
|
1
|
r[6] += *((@ftype@ *)(a + (i + 6) * stride));
|
2612
|
1
|
r[7] += *((@ftype@ *)(a + (i + 6) * stride + sizeof(@ftype@)));
|
2613
|
|
}
|
2614
|
|
|
2615
|
|
/* accumulate now to avoid stack spills for single peel loop */
|
2616
|
1
|
*rr = ((r[0] + r[2]) + (r[4] + r[6]));
|
2617
|
1
|
*ri = ((r[1] + r[3]) + (r[5] + r[7]));
|
2618
|
|
|
2619
|
|
/* do non multiple of 8 rest */
|
2620
|
1
|
for (; i < n; i+=2) {
|
2621
|
1
|
*rr += *((@ftype@ *)(a + i * stride + 0));
|
2622
|
1
|
*ri += *((@ftype@ *)(a + i * stride + sizeof(@ftype@)));
|
2623
|
|
}
|
2624
|
|
return;
|
2625
|
|
}
|
2626
|
|
else {
|
2627
|
|
/* divide by two but avoid non-multiples of unroll factor */
|
2628
|
|
@ftype@ rr1, ri1, rr2, ri2;
|
2629
|
1
|
npy_intp n2 = n / 2;
|
2630
|
|
|
2631
|
1
|
n2 -= n2 % 8;
|
2632
|
1
|
pairwise_sum_@TYPE@(&rr1, &ri1, a, n2, stride);
|
2633
|
1
|
pairwise_sum_@TYPE@(&rr2, &ri2, a + n2 * stride, n - n2, stride);
|
2634
|
1
|
*rr = rr1 + rr2;
|
2635
|
1
|
*ri = ri1 + ri2;
|
2636
|
|
return;
|
2637
|
|
}
|
2638
|
|
}
|
2639
|
|
|
2640
|
|
|
2641
|
|
/**begin repeat1
|
2642
|
|
* arithmetic
|
2643
|
|
* #kind = add, subtract#
|
2644
|
|
* #OP = +, -#
|
2645
|
|
* #PW = 1, 0#
|
2646
|
|
*/
|
2647
|
|
NPY_NO_EXPORT void
|
2648
|
1
|
@TYPE@_@kind@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2649
|
|
{
|
2650
|
1
|
if (IS_BINARY_REDUCE && @PW@) {
|
2651
|
1
|
npy_intp n = dimensions[0];
|
2652
|
1
|
@ftype@ * or = ((@ftype@ *)args[0]);
|
2653
|
1
|
@ftype@ * oi = ((@ftype@ *)args[0]) + 1;
|
2654
|
|
@ftype@ rr, ri;
|
2655
|
|
|
2656
|
1
|
pairwise_sum_@TYPE@(&rr, &ri, args[1], n * 2, steps[1] / 2);
|
2657
|
1
|
*or @OP@= rr;
|
2658
|
1
|
*oi @OP@= ri;
|
2659
|
|
return;
|
2660
|
|
}
|
2661
|
|
else {
|
2662
|
1
|
BINARY_LOOP {
|
2663
|
1
|
const @ftype@ in1r = ((@ftype@ *)ip1)[0];
|
2664
|
1
|
const @ftype@ in1i = ((@ftype@ *)ip1)[1];
|
2665
|
1
|
const @ftype@ in2r = ((@ftype@ *)ip2)[0];
|
2666
|
1
|
const @ftype@ in2i = ((@ftype@ *)ip2)[1];
|
2667
|
1
|
((@ftype@ *)op1)[0] = in1r @OP@ in2r;
|
2668
|
1
|
((@ftype@ *)op1)[1] = in1i @OP@ in2i;
|
2669
|
|
}
|
2670
|
|
}
|
2671
|
|
}
|
2672
|
|
/**end repeat1**/
|
2673
|
|
|
2674
|
|
NPY_NO_EXPORT void
|
2675
|
1
|
@TYPE@_multiply(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2676
|
|
{
|
2677
|
1
|
BINARY_LOOP {
|
2678
|
1
|
const @ftype@ in1r = ((@ftype@ *)ip1)[0];
|
2679
|
1
|
const @ftype@ in1i = ((@ftype@ *)ip1)[1];
|
2680
|
1
|
const @ftype@ in2r = ((@ftype@ *)ip2)[0];
|
2681
|
1
|
const @ftype@ in2i = ((@ftype@ *)ip2)[1];
|
2682
|
1
|
((@ftype@ *)op1)[0] = in1r*in2r - in1i*in2i;
|
2683
|
1
|
((@ftype@ *)op1)[1] = in1r*in2i + in1i*in2r;
|
2684
|
|
}
|
2685
|
1
|
}
|
2686
|
|
|
2687
|
|
NPY_NO_EXPORT void
|
2688
|
1
|
@TYPE@_divide(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2689
|
|
{
|
2690
|
1
|
BINARY_LOOP {
|
2691
|
1
|
const @ftype@ in1r = ((@ftype@ *)ip1)[0];
|
2692
|
1
|
const @ftype@ in1i = ((@ftype@ *)ip1)[1];
|
2693
|
1
|
const @ftype@ in2r = ((@ftype@ *)ip2)[0];
|
2694
|
1
|
const @ftype@ in2i = ((@ftype@ *)ip2)[1];
|
2695
|
1
|
const @ftype@ in2r_abs = npy_fabs@c@(in2r);
|
2696
|
1
|
const @ftype@ in2i_abs = npy_fabs@c@(in2i);
|
2697
|
1
|
if (in2r_abs >= in2i_abs) {
|
2698
|
1
|
if (in2r_abs == 0 && in2i_abs == 0) {
|
2699
|
|
/* divide by zero should yield a complex inf or nan */
|
2700
|
1
|
((@ftype@ *)op1)[0] = in1r/in2r_abs;
|
2701
|
1
|
((@ftype@ *)op1)[1] = in1i/in2i_abs;
|
2702
|
|
}
|
2703
|
|
else {
|
2704
|
1
|
const @ftype@ rat = in2i/in2r;
|
2705
|
1
|
const @ftype@ scl = 1.0@c@/(in2r + in2i*rat);
|
2706
|
1
|
((@ftype@ *)op1)[0] = (in1r + in1i*rat)*scl;
|
2707
|
1
|
((@ftype@ *)op1)[1] = (in1i - in1r*rat)*scl;
|
2708
|
|
}
|
2709
|
|
}
|
2710
|
|
else {
|
2711
|
1
|
const @ftype@ rat = in2r/in2i;
|
2712
|
1
|
const @ftype@ scl = 1.0@c@/(in2i + in2r*rat);
|
2713
|
1
|
((@ftype@ *)op1)[0] = (in1r*rat + in1i)*scl;
|
2714
|
1
|
((@ftype@ *)op1)[1] = (in1i*rat - in1r)*scl;
|
2715
|
|
}
|
2716
|
|
}
|
2717
|
1
|
}
|
2718
|
|
|
2719
|
|
#if @SIMD@
|
2720
|
|
NPY_NO_EXPORT void
|
2721
|
1
|
@TYPE@_add_avx512f(char **args, const npy_intp *dimensions, const npy_intp *steps, void *func)
|
2722
|
|
{
|
2723
|
1
|
if (IS_BINARY_REDUCE) {
|
2724
|
1
|
@TYPE@_add(args, dimensions, steps, func);
|
2725
|
|
}
|
2726
|
1
|
else if (!run_binary_avx512f_add_@TYPE@(args, dimensions, steps)) {
|
2727
|
1
|
@TYPE@_add(args, dimensions, steps, func);
|
2728
|
|
}
|
2729
|
1
|
}
|
2730
|
|
|
2731
|
|
/**begin repeat1
|
2732
|
|
* arithmetic
|
2733
|
|
* #kind = subtract, multiply#
|
2734
|
|
*/
|
2735
|
|
NPY_NO_EXPORT void
|
2736
|
1
|
@TYPE@_@kind@_avx512f(char **args, const npy_intp *dimensions, const npy_intp *steps, void *func)
|
2737
|
|
{
|
2738
|
1
|
if (!run_binary_avx512f_@kind@_@TYPE@(args, dimensions, steps)) {
|
2739
|
1
|
@TYPE@_@kind@(args, dimensions, steps, func);
|
2740
|
|
}
|
2741
|
1
|
}
|
2742
|
|
/**end repeat1**/
|
2743
|
|
#endif
|
2744
|
|
|
2745
|
|
NPY_NO_EXPORT void
|
2746
|
1
|
@TYPE@_floor_divide(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2747
|
|
{
|
2748
|
1
|
BINARY_LOOP {
|
2749
|
1
|
const @ftype@ in1r = ((@ftype@ *)ip1)[0];
|
2750
|
1
|
const @ftype@ in1i = ((@ftype@ *)ip1)[1];
|
2751
|
1
|
const @ftype@ in2r = ((@ftype@ *)ip2)[0];
|
2752
|
1
|
const @ftype@ in2i = ((@ftype@ *)ip2)[1];
|
2753
|
1
|
if (npy_fabs@c@(in2r) >= npy_fabs@c@(in2i)) {
|
2754
|
1
|
const @ftype@ rat = in2i/in2r;
|
2755
|
1
|
((@ftype@ *)op1)[0] = npy_floor@c@((in1r + in1i*rat)/(in2r + in2i*rat));
|
2756
|
1
|
((@ftype@ *)op1)[1] = 0;
|
2757
|
1
|
}
|
2758
|
1
|
else {
|
2759
|
1
|
const @ftype@ rat = in2r/in2i;
|
2760
|
1
|
((@ftype@ *)op1)[0] = npy_floor@c@((in1r*rat + in1i)/(in2i + in2r*rat));
|
2761
|
1
|
((@ftype@ *)op1)[1] = 0;
|
2762
|
1
|
}
|
2763
|
|
}
|
2764
|
1
|
}
|
2765
|
0
|
|
2766
|
0
|
/**begin repeat1
|
2767
|
0
|
* #kind= greater, greater_equal, less, less_equal, equal, not_equal#
|
2768
|
|
* #OP = CGT, CGE, CLT, CLE, CEQ, CNE#
|
2769
|
|
*/
|
2770
|
1
|
NPY_NO_EXPORT void
|
2771
|
1
|
@TYPE@_@kind@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2772
|
|
{
|
2773
|
1
|
BINARY_LOOP {
|
2774
|
1
|
const @ftype@ in1r = ((@ftype@ *)ip1)[0];
|
2775
|
1
|
const @ftype@ in1i = ((@ftype@ *)ip1)[1];
|
2776
|
1
|
const @ftype@ in2r = ((@ftype@ *)ip2)[0];
|
2777
|
1
|
const @ftype@ in2i = ((@ftype@ *)ip2)[1];
|
2778
|
1
|
*((npy_bool *)op1) = @OP@(in1r,in1i,in2r,in2i);
|
2779
|
|
}
|
2780
|
1
|
}
|
2781
|
|
/**end repeat1**/
|
2782
|
|
|
2783
|
|
/**begin repeat1
|
2784
|
|
#kind = logical_and, logical_or#
|
2785
|
|
#OP1 = ||, ||#
|
2786
|
|
#OP2 = &&, ||#
|
2787
|
|
*/
|
2788
|
|
NPY_NO_EXPORT void
|
2789
|
1
|
@TYPE@_@kind@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2790
|
|
{
|
2791
|
1
|
BINARY_LOOP {
|
2792
|
1
|
const @ftype@ in1r = ((@ftype@ *)ip1)[0];
|
2793
|
1
|
const @ftype@ in1i = ((@ftype@ *)ip1)[1];
|
2794
|
1
|
const @ftype@ in2r = ((@ftype@ *)ip2)[0];
|
2795
|
1
|
const @ftype@ in2i = ((@ftype@ *)ip2)[1];
|
2796
|
1
|
*((npy_bool *)op1) = (in1r @OP1@ in1i) @OP2@ (in2r @OP1@ in2i);
|
2797
|
|
}
|
2798
|
1
|
}
|
2799
|
|
/**end repeat1**/
|
2800
|
|
|
2801
|
|
NPY_NO_EXPORT void
|
2802
|
1
|
@TYPE@_logical_xor(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2803
|
|
{
|
2804
|
1
|
BINARY_LOOP {
|
2805
|
1
|
const @ftype@ in1r = ((@ftype@ *)ip1)[0];
|
2806
|
1
|
const @ftype@ in1i = ((@ftype@ *)ip1)[1];
|
2807
|
1
|
const @ftype@ in2r = ((@ftype@ *)ip2)[0];
|
2808
|
1
|
const @ftype@ in2i = ((@ftype@ *)ip2)[1];
|
2809
|
1
|
const npy_bool tmp1 = (in1r || in1i);
|
2810
|
1
|
const npy_bool tmp2 = (in2r || in2i);
|
2811
|
1
|
*((npy_bool *)op1) = tmp1 != tmp2;
|
2812
|
|
}
|
2813
|
1
|
}
|
2814
|
|
|
2815
|
|
NPY_NO_EXPORT void
|
2816
|
0
|
@TYPE@_logical_not(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2817
|
|
{
|
2818
|
0
|
UNARY_LOOP {
|
2819
|
0
|
const @ftype@ in1r = ((@ftype@ *)ip1)[0];
|
2820
|
0
|
const @ftype@ in1i = ((@ftype@ *)ip1)[1];
|
2821
|
0
|
*((npy_bool *)op1) = !(in1r || in1i);
|
2822
|
|
}
|
2823
|
0
|
}
|
2824
|
|
|
2825
|
|
/**begin repeat1
|
2826
|
|
* #kind = isnan, isinf, isfinite#
|
2827
|
|
* #func = npy_isnan, npy_isinf, npy_isfinite#
|
2828
|
|
* #OP = ||, ||, &&#
|
2829
|
|
**/
|
2830
|
|
NPY_NO_EXPORT void
|
2831
|
1
|
@TYPE@_@kind@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2832
|
|
{
|
2833
|
1
|
UNARY_LOOP {
|
2834
|
1
|
const @ftype@ in1r = ((@ftype@ *)ip1)[0];
|
2835
|
1
|
const @ftype@ in1i = ((@ftype@ *)ip1)[1];
|
2836
|
1
|
*((npy_bool *)op1) = @func@(in1r) @OP@ @func@(in1i);
|
2837
|
|
}
|
2838
|
1
|
npy_clear_floatstatus_barrier((char*)dimensions);
|
2839
|
1
|
}
|
2840
|
|
/**end repeat1**/
|
2841
|
|
|
2842
|
|
NPY_NO_EXPORT void
|
2843
|
1
|
@TYPE@_square(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(data))
|
2844
|
|
{
|
2845
|
1
|
UNARY_LOOP {
|
2846
|
1
|
const @ftype@ in1r = ((@ftype@ *)ip1)[0];
|
2847
|
1
|
const @ftype@ in1i = ((@ftype@ *)ip1)[1];
|
2848
|
1
|
((@ftype@ *)op1)[0] = in1r*in1r - in1i*in1i;
|
2849
|
1
|
((@ftype@ *)op1)[1] = in1r*in1i + in1i*in1r;
|
2850
|
|
}
|
2851
|
1
|
}
|
2852
|
|
|
2853
|
|
NPY_NO_EXPORT void
|
2854
|
1
|
@TYPE@_reciprocal(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(data))
|
2855
|
|
{
|
2856
|
1
|
UNARY_LOOP {
|
2857
|
1
|
const @ftype@ in1r = ((@ftype@ *)ip1)[0];
|
2858
|
1
|
const @ftype@ in1i = ((@ftype@ *)ip1)[1];
|
2859
|
1
|
if (npy_fabs@c@(in1i) <= npy_fabs@c@(in1r)) {
|
2860
|
1
|
const @ftype@ r = in1i/in1r;
|
2861
|
1
|
const @ftype@ d = in1r + in1i*r;
|
2862
|
1
|
((@ftype@ *)op1)[0] = 1/d;
|
2863
|
1
|
((@ftype@ *)op1)[1] = -r/d;
|
2864
|
|
} else {
|
2865
|
1
|
const @ftype@ r = in1r/in1i;
|
2866
|
1
|
const @ftype@ d = in1r*r + in1i;
|
2867
|
1
|
((@ftype@ *)op1)[0] = r/d;
|
2868
|
1
|
((@ftype@ *)op1)[1] = -1/d;
|
2869
|
|
}
|
2870
|
|
}
|
2871
|
1
|
}
|
2872
|
|
|
2873
|
|
NPY_NO_EXPORT void
|
2874
|
1
|
@TYPE@__ones_like(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(data))
|
2875
|
|
{
|
2876
|
1
|
OUTPUT_LOOP {
|
2877
|
1
|
((@ftype@ *)op1)[0] = 1;
|
2878
|
1
|
((@ftype@ *)op1)[1] = 0;
|
2879
|
|
}
|
2880
|
1
|
}
|
2881
|
|
|
2882
|
|
NPY_NO_EXPORT void
|
2883
|
1
|
@TYPE@_conjugate(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func)) {
|
2884
|
1
|
UNARY_LOOP {
|
2885
|
1
|
const @ftype@ in1r = ((@ftype@ *)ip1)[0];
|
2886
|
1
|
const @ftype@ in1i = ((@ftype@ *)ip1)[1];
|
2887
|
1
|
((@ftype@ *)op1)[0] = in1r;
|
2888
|
1
|
((@ftype@ *)op1)[1] = -in1i;
|
2889
|
|
}
|
2890
|
1
|
}
|
2891
|
|
|
2892
|
|
NPY_NO_EXPORT void
|
2893
|
1
|
@TYPE@_absolute(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2894
|
|
{
|
2895
|
1
|
UNARY_LOOP {
|
2896
|
1
|
const @ftype@ in1r = ((@ftype@ *)ip1)[0];
|
2897
|
1
|
const @ftype@ in1i = ((@ftype@ *)ip1)[1];
|
2898
|
1
|
*((@ftype@ *)op1) = npy_hypot@c@(in1r, in1i);
|
2899
|
|
}
|
2900
|
1
|
}
|
2901
|
|
|
2902
|
|
#if @SIMD@
|
2903
|
|
/**begin repeat1
|
2904
|
|
* arithmetic
|
2905
|
|
* #kind = conjugate, square, absolute#
|
2906
|
|
*/
|
2907
|
|
NPY_NO_EXPORT void
|
2908
|
1
|
@TYPE@_@kind@_avx512f(char **args, const npy_intp *dimensions, const npy_intp *steps, void *func)
|
2909
|
|
{
|
2910
|
1
|
if (!run_unary_avx512f_@kind@_@TYPE@(args, dimensions, steps)) {
|
2911
|
1
|
@TYPE@_@kind@(args, dimensions, steps, func);
|
2912
|
|
}
|
2913
|
1
|
}
|
2914
|
|
/**end repeat1**/
|
2915
|
|
#endif
|
2916
|
|
|
2917
|
|
NPY_NO_EXPORT void
|
2918
|
1
|
@TYPE@__arg(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2919
|
|
{
|
2920
|
1
|
UNARY_LOOP {
|
2921
|
1
|
const @ftype@ in1r = ((@ftype@ *)ip1)[0];
|
2922
|
1
|
const @ftype@ in1i = ((@ftype@ *)ip1)[1];
|
2923
|
1
|
*((@ftype@ *)op1) = npy_atan2@c@(in1i, in1r);
|
2924
|
|
}
|
2925
|
1
|
}
|
2926
|
|
|
2927
|
|
NPY_NO_EXPORT void
|
2928
|
1
|
@TYPE@_sign(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2929
|
|
{
|
2930
|
|
/* fixme: sign of nan is currently 0 */
|
2931
|
1
|
UNARY_LOOP {
|
2932
|
1
|
const @ftype@ in1r = ((@ftype@ *)ip1)[0];
|
2933
|
1
|
const @ftype@ in1i = ((@ftype@ *)ip1)[1];
|
2934
|
1
|
((@ftype@ *)op1)[0] = CGT(in1r, in1i, 0.0, 0.0) ? 1 :
|
2935
|
1
|
(CLT(in1r, in1i, 0.0, 0.0) ? -1 :
|
2936
|
1
|
(CEQ(in1r, in1i, 0.0, 0.0) ? 0 : NPY_NAN@C@));
|
2937
|
1
|
((@ftype@ *)op1)[1] = 0;
|
2938
|
0
|
}
|
2939
|
1
|
}
|
2940
|
0
|
|
2941
|
|
/**begin repeat1
|
2942
|
|
* #kind = maximum, minimum#
|
2943
|
1
|
* #OP = CGE, CLE#
|
2944
|
|
*/
|
2945
|
|
NPY_NO_EXPORT void
|
2946
|
1
|
@TYPE@_@kind@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2947
|
1
|
{
|
2948
|
1
|
BINARY_LOOP {
|
2949
|
1
|
@ftype@ in1r = ((@ftype@ *)ip1)[0];
|
2950
|
1
|
@ftype@ in1i = ((@ftype@ *)ip1)[1];
|
2951
|
1
|
const @ftype@ in2r = ((@ftype@ *)ip2)[0];
|
2952
|
1
|
const @ftype@ in2i = ((@ftype@ *)ip2)[1];
|
2953
|
1
|
if ( !(npy_isnan(in1r) || npy_isnan(in1i) || @OP@(in1r, in1i, in2r, in2i))) {
|
2954
|
1
|
in1r = in2r;
|
2955
|
1
|
in1i = in2i;
|
2956
|
|
}
|
2957
|
1
|
((@ftype@ *)op1)[0] = in1r;
|
2958
|
1
|
((@ftype@ *)op1)[1] = in1i;
|
2959
|
|
}
|
2960
|
1
|
npy_clear_floatstatus_barrier((char*)dimensions);
|
2961
|
1
|
}
|
2962
|
|
/**end repeat1**/
|
2963
|
|
|
2964
|
|
/**begin repeat1
|
2965
|
|
* #kind = fmax, fmin#
|
2966
|
|
* #OP = CGE, CLE#
|
2967
|
|
*/
|
2968
|
|
NPY_NO_EXPORT void
|
2969
|
1
|
@TYPE@_@kind@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
2970
|
|
{
|
2971
|
1
|
BINARY_LOOP {
|
2972
|
1
|
const @ftype@ in1r = ((@ftype@ *)ip1)[0];
|
2973
|
1
|
const @ftype@ in1i = ((@ftype@ *)ip1)[1];
|
2974
|
1
|
const @ftype@ in2r = ((@ftype@ *)ip2)[0];
|
2975
|
1
|
const @ftype@ in2i = ((@ftype@ *)ip2)[1];
|
2976
|
1
|
if (npy_isnan(in2r) || npy_isnan(in2i) || @OP@(in1r, in1i, in2r, in2i)) {
|
2977
|
1
|
((@ftype@ *)op1)[0] = in1r;
|
2978
|
1
|
((@ftype@ *)op1)[1] = in1i;
|
2979
|
|
}
|
2980
|
|
else {
|
2981
|
1
|
((@ftype@ *)op1)[0] = in2r;
|
2982
|
1
|
((@ftype@ *)op1)[1] = in2i;
|
2983
|
|
}
|
2984
|
|
}
|
2985
|
1
|
npy_clear_floatstatus_barrier((char*)dimensions);
|
2986
|
1
|
}
|
2987
|
|
/**end repeat1**/
|
2988
|
|
|
2989
|
|
#define @TYPE@_true_divide @TYPE@_divide
|
2990
|
|
|
2991
|
|
/**end repeat**/
|
2992
|
|
|
2993
|
|
#undef CGE
|
2994
|
|
#undef CLE
|
2995
|
|
#undef CGT
|
2996
|
|
#undef CLT
|
2997
|
|
#undef CEQ
|
2998
|
|
#undef CNE
|
2999
|
|
|
3000
|
|
/*
|
3001
|
|
*****************************************************************************
|
3002
|
|
** OBJECT LOOPS **
|
3003
|
|
*****************************************************************************
|
3004
|
|
*/
|
3005
|
|
|
3006
|
|
/**begin repeat
|
3007
|
|
* #kind = equal, not_equal, greater, greater_equal, less, less_equal#
|
3008
|
|
* #OP = EQ, NE, GT, GE, LT, LE#
|
3009
|
|
* #identity = NPY_TRUE, NPY_FALSE, -1*4#
|
3010
|
|
*/
|
3011
|
|
|
3012
|
|
/**begin repeat1
|
3013
|
|
* #suffix = , _OO_O#
|
3014
|
|
* #as_bool = 1, 0#
|
3015
|
|
*/
|
3016
|
|
NPY_NO_EXPORT void
|
3017
|
1
|
OBJECT@suffix@_@kind@(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func)) {
|
3018
|
1
|
BINARY_LOOP {
|
3019
|
|
PyObject *ret_obj;
|
3020
|
1
|
PyObject *in1 = *(PyObject **)ip1;
|
3021
|
1
|
PyObject *in2 = *(PyObject **)ip2;
|
3022
|
|
|
3023
|
1
|
in1 = in1 ? in1 : Py_None;
|
3024
|
1
|
in2 = in2 ? in2 : Py_None;
|
3025
|
|
|
3026
|
|
/*
|
3027
|
|
* Do not use RichCompareBool because it includes an identity check for
|
3028
|
|
* == and !=. This is wrong for elementwise behaviour, since it means
|
3029
|
|
* that NaN can be equal to NaN and an array is equal to itself.
|
3030
|
|
*/
|
3031
|
1
|
ret_obj = PyObject_RichCompare(in1, in2, Py_@OP@);
|
3032
|
1
|
if (ret_obj == NULL) {
|
3033
|
|
return;
|
3034
|
|
}
|
3035
|
|
#if @as_bool@
|
3036
|
|
{
|
3037
|
1
|
int ret = PyObject_IsTrue(ret_obj);
|
3038
|
1
|
Py_DECREF(ret_obj);
|
3039
|
1
|
if (ret == -1) {
|
3040
|
|
return;
|
3041
|
|
}
|
3042
|
1
|
*((npy_bool *)op1) = (npy_bool)ret;
|
3043
|
|
}
|
3044
|
|
#else
|
3045
|
1
|
*((PyObject **)op1) = ret_obj;
|
3046
|
|
#endif
|
3047
|
|
}
|
3048
|
|
}
|
3049
|
|
/**end repeat1**/
|
3050
|
|
/**end repeat**/
|
3051
|
|
|
3052
|
|
NPY_NO_EXPORT void
|
3053
|
1
|
OBJECT_sign(char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func))
|
3054
|
|
{
|
3055
|
1
|
PyObject *zero = PyLong_FromLong(0);
|
3056
|
|
|
3057
|
1
|
UNARY_LOOP {
|
3058
|
1
|
PyObject *in1 = *(PyObject **)ip1;
|
3059
|
1
|
PyObject **out = (PyObject **)op1;
|
3060
|
1
|
PyObject *ret = NULL;
|
3061
|
|
int v;
|
3062
|
|
|
3063
|
1
|
if (in1 == NULL) {
|
3064
|
0
|
in1 = Py_None;
|
3065
|
|
}
|
3066
|
|
|
3067
|
1
|
if ((v = PyObject_RichCompareBool(in1, zero, Py_LT)) == 1) {
|
3068
|
1
|
ret = PyLong_FromLong(-1);
|
3069
|
|
}
|
3070
|
1
|
else if (v == 0 &&
|
3071
|
|
(v = PyObject_RichCompareBool(in1, zero, Py_GT)) == 1) {
|
3072
|
1
|
ret = PyLong_FromLong(1);
|
3073
|
|
}
|
3074
|
1
|
else if (v == 0 &&
|
3075
|
|
(v = PyObject_RichCompareBool(in1, zero, Py_EQ)) == 1) {
|
3076
|
1
|
ret = PyLong_FromLong(0);
|
3077
|
|
}
|
3078
|
1
|
else if (v == 0) {
|
3079
|
|
/* in1 is NaN */
|
3080
|
1
|
PyErr_SetString(PyExc_TypeError,
|
3081
|
|
"unorderable types for comparison");
|
3082
|
|
}
|
3083
|
|
|
3084
|
1
|
if (ret == NULL) {
|
3085
|
|
break;
|
3086
|
|
}
|
3087
|
1
|
Py_XDECREF(*out);
|
3088
|
1
|
*out = ret;
|
3089
|
|
}
|
3090
|
1
|
Py_XDECREF(zero);
|
3091
|
1
|
}
|
3092
|
|
|
3093
|
|
/*
|
3094
|
|
*****************************************************************************
|
3095
|
|
** END LOOPS **
|
3096
|
|
*****************************************************************************
|
3097
|
|
*/
|