1
|
|
/*
|
2
|
|
Provide multidimensional arrays as a basic object type in python.
|
3
|
|
|
4
|
|
Based on Original Numeric implementation
|
5
|
|
Copyright (c) 1995, 1996, 1997 Jim Hugunin, hugunin@mit.edu
|
6
|
|
|
7
|
|
with contributions from many Numeric Python developers 1995-2004
|
8
|
|
|
9
|
|
Heavily modified in 2005 with inspiration from Numarray
|
10
|
|
|
11
|
|
by
|
12
|
|
|
13
|
|
Travis Oliphant, oliphant@ee.byu.edu
|
14
|
|
Brigham Young University
|
15
|
|
|
16
|
|
|
17
|
|
maintainer email: oliphant.travis@ieee.org
|
18
|
|
|
19
|
|
Numarray design (which provided guidance) by
|
20
|
|
Space Science Telescope Institute
|
21
|
|
(J. Todd Miller, Perry Greenfield, Rick White)
|
22
|
|
*/
|
23
|
|
#define PY_SSIZE_T_CLEAN
|
24
|
|
#include <Python.h>
|
25
|
|
#include "structmember.h"
|
26
|
|
|
27
|
|
/*#include <stdio.h>*/
|
28
|
|
#define NPY_NO_DEPRECATED_API NPY_API_VERSION
|
29
|
|
#define _MULTIARRAYMODULE
|
30
|
|
#include "numpy/arrayobject.h"
|
31
|
|
#include "numpy/arrayscalars.h"
|
32
|
|
|
33
|
|
#include "npy_config.h"
|
34
|
|
|
35
|
|
#include "common.h"
|
36
|
|
|
37
|
|
#include "npy_pycompat.h"
|
38
|
|
|
39
|
|
#include "usertypes.h"
|
40
|
|
#include "dtypemeta.h"
|
41
|
|
|
42
|
|
NPY_NO_EXPORT PyArray_Descr **userdescrs=NULL;
|
43
|
|
|
44
|
|
static int
|
45
|
1
|
_append_new(int **p_types, int insert)
|
46
|
|
{
|
47
|
1
|
int n = 0;
|
48
|
|
int *newtypes;
|
49
|
1
|
int *types = *p_types;
|
50
|
|
|
51
|
1
|
while (types[n] != NPY_NOTYPE) {
|
52
|
0
|
n++;
|
53
|
|
}
|
54
|
1
|
newtypes = (int *)realloc(types, (n + 2)*sizeof(int));
|
55
|
1
|
if (newtypes == NULL) {
|
56
|
0
|
PyErr_NoMemory();
|
57
|
0
|
return -1;
|
58
|
|
}
|
59
|
1
|
newtypes[n] = insert;
|
60
|
1
|
newtypes[n + 1] = NPY_NOTYPE;
|
61
|
|
|
62
|
|
/* Replace the passed-in pointer */
|
63
|
1
|
*p_types = newtypes;
|
64
|
1
|
return 0;
|
65
|
|
}
|
66
|
|
|
67
|
|
static npy_bool
|
68
|
0
|
_default_nonzero(void *ip, void *arr)
|
69
|
|
{
|
70
|
0
|
int elsize = PyArray_ITEMSIZE(arr);
|
71
|
0
|
char *ptr = ip;
|
72
|
0
|
while (elsize--) {
|
73
|
0
|
if (*ptr++ != 0) {
|
74
|
|
return NPY_TRUE;
|
75
|
|
}
|
76
|
|
}
|
77
|
|
return NPY_FALSE;
|
78
|
|
}
|
79
|
|
|
80
|
|
static void
|
81
|
0
|
_default_copyswapn(void *dst, npy_intp dstride, void *src,
|
82
|
|
npy_intp sstride, npy_intp n, int swap, void *arr)
|
83
|
|
{
|
84
|
|
npy_intp i;
|
85
|
|
PyArray_CopySwapFunc *copyswap;
|
86
|
0
|
char *dstptr = dst;
|
87
|
0
|
char *srcptr = src;
|
88
|
|
|
89
|
0
|
copyswap = PyArray_DESCR(arr)->f->copyswap;
|
90
|
|
|
91
|
0
|
for (i = 0; i < n; i++) {
|
92
|
0
|
copyswap(dstptr, srcptr, swap, arr);
|
93
|
0
|
dstptr += dstride;
|
94
|
0
|
srcptr += sstride;
|
95
|
|
}
|
96
|
|
}
|
97
|
|
|
98
|
|
/*NUMPY_API
|
99
|
|
Initialize arrfuncs to NULL
|
100
|
|
*/
|
101
|
|
NPY_NO_EXPORT void
|
102
|
1
|
PyArray_InitArrFuncs(PyArray_ArrFuncs *f)
|
103
|
|
{
|
104
|
|
int i;
|
105
|
|
|
106
|
1
|
for(i = 0; i < NPY_NTYPES_ABI_COMPATIBLE; i++) {
|
107
|
1
|
f->cast[i] = NULL;
|
108
|
|
}
|
109
|
1
|
f->getitem = NULL;
|
110
|
1
|
f->setitem = NULL;
|
111
|
1
|
f->copyswapn = NULL;
|
112
|
1
|
f->copyswap = NULL;
|
113
|
1
|
f->compare = NULL;
|
114
|
1
|
f->argmax = NULL;
|
115
|
1
|
f->argmin = NULL;
|
116
|
1
|
f->dotfunc = NULL;
|
117
|
1
|
f->scanfunc = NULL;
|
118
|
1
|
f->fromstr = NULL;
|
119
|
1
|
f->nonzero = NULL;
|
120
|
1
|
f->fill = NULL;
|
121
|
1
|
f->fillwithscalar = NULL;
|
122
|
1
|
for(i = 0; i < NPY_NSORTS; i++) {
|
123
|
1
|
f->sort[i] = NULL;
|
124
|
1
|
f->argsort[i] = NULL;
|
125
|
|
}
|
126
|
1
|
f->castdict = NULL;
|
127
|
1
|
f->scalarkind = NULL;
|
128
|
1
|
f->cancastscalarkindto = NULL;
|
129
|
1
|
f->cancastto = NULL;
|
130
|
1
|
f->fastclip = NULL;
|
131
|
1
|
f->fastputmask = NULL;
|
132
|
1
|
f->fasttake = NULL;
|
133
|
|
}
|
134
|
|
|
135
|
|
|
136
|
|
static int
|
137
|
1
|
test_deprecated_arrfuncs_members(PyArray_ArrFuncs *f) {
|
138
|
|
/* NumPy 1.19, 2020-01-15 */
|
139
|
1
|
if (f->fastputmask != NULL) {
|
140
|
0
|
if (DEPRECATE(
|
141
|
|
"The ->f->fastputmask member of custom dtypes is ignored; "
|
142
|
|
"setting it may be an error in the future.\n"
|
143
|
|
"The custom dtype you are using must be revised, but "
|
144
|
|
"results will not be affected.") < 0) {
|
145
|
|
return -1;
|
146
|
|
}
|
147
|
|
}
|
148
|
|
/* NumPy 1.19, 2020-01-15 */
|
149
|
1
|
if (f->fasttake != NULL) {
|
150
|
0
|
if (DEPRECATE(
|
151
|
|
"The ->f->fastputmask member of custom dtypes is ignored; "
|
152
|
|
"setting it may be an error in the future.\n"
|
153
|
|
"The custom dtype you are using must be revised, but "
|
154
|
|
"results will not be affected.") < 0) {
|
155
|
|
return -1;
|
156
|
|
}
|
157
|
|
}
|
158
|
|
/* NumPy 1.19, 2020-01-15 */
|
159
|
1
|
if (f->fastclip != NULL) {
|
160
|
|
/* fastclip was already deprecated at execution time in 1.17. */
|
161
|
0
|
if (DEPRECATE(
|
162
|
|
"The ->f->fastclip member of custom dtypes is deprecated; "
|
163
|
|
"setting it will be an error in the future.\n"
|
164
|
|
"The custom dtype you are using must be changed to use "
|
165
|
|
"PyUFunc_RegisterLoopForDescr to attach a custom loop to "
|
166
|
|
"np.core.umath.clip, np.minimum, and np.maximum") < 0) {
|
167
|
|
return -1;
|
168
|
|
}
|
169
|
|
}
|
170
|
|
return 0;
|
171
|
|
}
|
172
|
|
|
173
|
|
/*
|
174
|
|
returns typenum to associate with this type >=NPY_USERDEF.
|
175
|
|
needs the userdecrs table and PyArray_NUMUSER variables
|
176
|
|
defined in arraytypes.inc
|
177
|
|
*/
|
178
|
|
/*NUMPY_API
|
179
|
|
Register Data type
|
180
|
|
Does not change the reference count of descr
|
181
|
|
*/
|
182
|
|
NPY_NO_EXPORT int
|
183
|
1
|
PyArray_RegisterDataType(PyArray_Descr *descr)
|
184
|
|
{
|
185
|
|
PyArray_Descr *descr2;
|
186
|
|
int typenum;
|
187
|
|
int i;
|
188
|
|
PyArray_ArrFuncs *f;
|
189
|
|
|
190
|
|
/* See if this type is already registered */
|
191
|
1
|
for (i = 0; i < NPY_NUMUSERTYPES; i++) {
|
192
|
0
|
descr2 = userdescrs[i];
|
193
|
0
|
if (descr2 == descr) {
|
194
|
0
|
return descr->type_num;
|
195
|
|
}
|
196
|
|
}
|
197
|
1
|
typenum = NPY_USERDEF + NPY_NUMUSERTYPES;
|
198
|
1
|
descr->type_num = typenum;
|
199
|
1
|
if (PyDataType_ISUNSIZED(descr)) {
|
200
|
0
|
PyErr_SetString(PyExc_ValueError, "cannot register a" \
|
201
|
|
"flexible data-type");
|
202
|
0
|
return -1;
|
203
|
|
}
|
204
|
1
|
f = descr->f;
|
205
|
1
|
if (f->nonzero == NULL) {
|
206
|
0
|
f->nonzero = _default_nonzero;
|
207
|
|
}
|
208
|
1
|
if (f->copyswapn == NULL) {
|
209
|
0
|
f->copyswapn = _default_copyswapn;
|
210
|
|
}
|
211
|
1
|
if (f->copyswap == NULL || f->getitem == NULL ||
|
212
|
1
|
f->setitem == NULL) {
|
213
|
0
|
PyErr_SetString(PyExc_ValueError, "a required array function" \
|
214
|
|
" is missing.");
|
215
|
0
|
return -1;
|
216
|
|
}
|
217
|
1
|
if (descr->flags & (NPY_ITEM_IS_POINTER | NPY_ITEM_REFCOUNT)) {
|
218
|
0
|
PyErr_SetString(PyExc_ValueError,
|
219
|
|
"Legacy user dtypes referencing python objects or generally "
|
220
|
|
"allocated memory are unsupported. "
|
221
|
|
"If you see this error in an existing, working code base, "
|
222
|
|
"please contact the NumPy developers.");
|
223
|
0
|
return -1;
|
224
|
|
}
|
225
|
1
|
if (descr->typeobj == NULL) {
|
226
|
0
|
PyErr_SetString(PyExc_ValueError, "missing typeobject");
|
227
|
0
|
return -1;
|
228
|
|
}
|
229
|
|
|
230
|
1
|
if (test_deprecated_arrfuncs_members(f) < 0) {
|
231
|
|
return -1;
|
232
|
|
}
|
233
|
|
|
234
|
1
|
userdescrs = realloc(userdescrs,
|
235
|
1
|
(NPY_NUMUSERTYPES+1)*sizeof(void *));
|
236
|
1
|
if (userdescrs == NULL) {
|
237
|
0
|
PyErr_SetString(PyExc_MemoryError, "RegisterDataType");
|
238
|
0
|
return -1;
|
239
|
|
}
|
240
|
1
|
userdescrs[NPY_NUMUSERTYPES++] = descr;
|
241
|
|
|
242
|
1
|
if (dtypemeta_wrap_legacy_descriptor(descr) < 0) {
|
243
|
|
return -1;
|
244
|
|
}
|
245
|
|
|
246
|
1
|
return typenum;
|
247
|
|
}
|
248
|
|
|
249
|
|
/*NUMPY_API
|
250
|
|
Register Casting Function
|
251
|
|
Replaces any function currently stored.
|
252
|
|
*/
|
253
|
|
NPY_NO_EXPORT int
|
254
|
1
|
PyArray_RegisterCastFunc(PyArray_Descr *descr, int totype,
|
255
|
|
PyArray_VectorUnaryFunc *castfunc)
|
256
|
|
{
|
257
|
|
PyObject *cobj, *key;
|
258
|
|
int ret;
|
259
|
|
|
260
|
1
|
if (totype < NPY_NTYPES_ABI_COMPATIBLE) {
|
261
|
1
|
descr->f->cast[totype] = castfunc;
|
262
|
1
|
return 0;
|
263
|
|
}
|
264
|
1
|
if (totype >= NPY_NTYPES && !PyTypeNum_ISUSERDEF(totype)) {
|
265
|
0
|
PyErr_SetString(PyExc_TypeError, "invalid type number.");
|
266
|
0
|
return -1;
|
267
|
|
}
|
268
|
1
|
if (descr->f->castdict == NULL) {
|
269
|
0
|
descr->f->castdict = PyDict_New();
|
270
|
0
|
if (descr->f->castdict == NULL) {
|
271
|
|
return -1;
|
272
|
|
}
|
273
|
|
}
|
274
|
1
|
key = PyLong_FromLong(totype);
|
275
|
1
|
if (PyErr_Occurred()) {
|
276
|
|
return -1;
|
277
|
|
}
|
278
|
1
|
cobj = PyCapsule_New((void *)castfunc, NULL, NULL);
|
279
|
1
|
if (cobj == NULL) {
|
280
|
0
|
Py_DECREF(key);
|
281
|
|
return -1;
|
282
|
|
}
|
283
|
1
|
ret = PyDict_SetItem(descr->f->castdict, key, cobj);
|
284
|
1
|
Py_DECREF(key);
|
285
|
1
|
Py_DECREF(cobj);
|
286
|
|
return ret;
|
287
|
|
}
|
288
|
|
|
289
|
|
/*NUMPY_API
|
290
|
|
* Register a type number indicating that a descriptor can be cast
|
291
|
|
* to it safely
|
292
|
|
*/
|
293
|
|
NPY_NO_EXPORT int
|
294
|
1
|
PyArray_RegisterCanCast(PyArray_Descr *descr, int totype,
|
295
|
|
NPY_SCALARKIND scalar)
|
296
|
|
{
|
297
|
|
/*
|
298
|
|
* If we were to allow this, the casting lookup table for
|
299
|
|
* built-in types needs to be modified, as cancastto is
|
300
|
|
* not checked for them.
|
301
|
|
*/
|
302
|
1
|
if (!PyTypeNum_ISUSERDEF(descr->type_num) &&
|
303
|
1
|
!PyTypeNum_ISUSERDEF(totype)) {
|
304
|
0
|
PyErr_SetString(PyExc_ValueError,
|
305
|
|
"At least one of the types provided to"
|
306
|
|
"RegisterCanCast must be user-defined.");
|
307
|
0
|
return -1;
|
308
|
|
}
|
309
|
|
|
310
|
1
|
if (scalar == NPY_NOSCALAR) {
|
311
|
|
/*
|
312
|
|
* register with cancastto
|
313
|
|
* These lists won't be freed once created
|
314
|
|
* -- they become part of the data-type
|
315
|
|
*/
|
316
|
1
|
if (descr->f->cancastto == NULL) {
|
317
|
1
|
descr->f->cancastto = (int *)malloc(1*sizeof(int));
|
318
|
1
|
if (descr->f->cancastto == NULL) {
|
319
|
0
|
PyErr_NoMemory();
|
320
|
0
|
return -1;
|
321
|
|
}
|
322
|
1
|
descr->f->cancastto[0] = NPY_NOTYPE;
|
323
|
|
}
|
324
|
1
|
return _append_new(&descr->f->cancastto, totype);
|
325
|
|
}
|
326
|
|
else {
|
327
|
|
/* register with cancastscalarkindto */
|
328
|
0
|
if (descr->f->cancastscalarkindto == NULL) {
|
329
|
|
int i;
|
330
|
0
|
descr->f->cancastscalarkindto =
|
331
|
0
|
(int **)malloc(NPY_NSCALARKINDS* sizeof(int*));
|
332
|
0
|
if (descr->f->cancastscalarkindto == NULL) {
|
333
|
0
|
PyErr_NoMemory();
|
334
|
0
|
return -1;
|
335
|
|
}
|
336
|
0
|
for (i = 0; i < NPY_NSCALARKINDS; i++) {
|
337
|
0
|
descr->f->cancastscalarkindto[i] = NULL;
|
338
|
|
}
|
339
|
|
}
|
340
|
0
|
if (descr->f->cancastscalarkindto[scalar] == NULL) {
|
341
|
0
|
descr->f->cancastscalarkindto[scalar] =
|
342
|
0
|
(int *)malloc(1*sizeof(int));
|
343
|
0
|
if (descr->f->cancastscalarkindto[scalar] == NULL) {
|
344
|
0
|
PyErr_NoMemory();
|
345
|
0
|
return -1;
|
346
|
|
}
|
347
|
0
|
descr->f->cancastscalarkindto[scalar][0] =
|
348
|
|
NPY_NOTYPE;
|
349
|
|
}
|
350
|
0
|
return _append_new(&descr->f->cancastscalarkindto[scalar], totype);
|
351
|
|
}
|
352
|
|
}
|