1
|
|
#ifndef __NPY_MATH_C99_H_
|
2
|
|
#define __NPY_MATH_C99_H_
|
3
|
|
|
4
|
|
#ifdef __cplusplus
|
5
|
|
extern "C" {
|
6
|
|
#endif
|
7
|
|
|
8
|
|
#include <math.h>
|
9
|
|
#ifdef __SUNPRO_CC
|
10
|
|
#include <sunmath.h>
|
11
|
|
#endif
|
12
|
|
#ifdef HAVE_NPY_CONFIG_H
|
13
|
|
#include <npy_config.h>
|
14
|
|
#endif
|
15
|
|
#include <numpy/npy_common.h>
|
16
|
|
|
17
|
|
/* By adding static inline specifiers to npy_math function definitions when
|
18
|
|
appropriate, compiler is given the opportunity to optimize */
|
19
|
|
#if NPY_INLINE_MATH
|
20
|
|
#define NPY_INPLACE NPY_INLINE static
|
21
|
|
#else
|
22
|
|
#define NPY_INPLACE
|
23
|
|
#endif
|
24
|
|
|
25
|
|
|
26
|
|
/*
|
27
|
|
* NAN and INFINITY like macros (same behavior as glibc for NAN, same as C99
|
28
|
|
* for INFINITY)
|
29
|
|
*
|
30
|
|
* XXX: I should test whether INFINITY and NAN are available on the platform
|
31
|
|
*/
|
32
|
|
NPY_INLINE static float __npy_inff(void)
|
33
|
|
{
|
34
|
1
|
const union { npy_uint32 __i; float __f;} __bint = {0x7f800000UL};
|
35
|
|
return __bint.__f;
|
36
|
|
}
|
37
|
|
|
38
|
|
NPY_INLINE static float __npy_nanf(void)
|
39
|
|
{
|
40
|
1
|
const union { npy_uint32 __i; float __f;} __bint = {0x7fc00000UL};
|
41
|
|
return __bint.__f;
|
42
|
|
}
|
43
|
|
|
44
|
|
NPY_INLINE static float __npy_pzerof(void)
|
45
|
|
{
|
46
|
1
|
const union { npy_uint32 __i; float __f;} __bint = {0x00000000UL};
|
47
|
|
return __bint.__f;
|
48
|
|
}
|
49
|
|
|
50
|
|
NPY_INLINE static float __npy_nzerof(void)
|
51
|
|
{
|
52
|
1
|
const union { npy_uint32 __i; float __f;} __bint = {0x80000000UL};
|
53
|
|
return __bint.__f;
|
54
|
|
}
|
55
|
|
|
56
|
|
#define NPY_INFINITYF __npy_inff()
|
57
|
|
#define NPY_NANF __npy_nanf()
|
58
|
|
#define NPY_PZEROF __npy_pzerof()
|
59
|
|
#define NPY_NZEROF __npy_nzerof()
|
60
|
|
|
61
|
|
#define NPY_INFINITY ((npy_double)NPY_INFINITYF)
|
62
|
|
#define NPY_NAN ((npy_double)NPY_NANF)
|
63
|
|
#define NPY_PZERO ((npy_double)NPY_PZEROF)
|
64
|
|
#define NPY_NZERO ((npy_double)NPY_NZEROF)
|
65
|
|
|
66
|
|
#define NPY_INFINITYL ((npy_longdouble)NPY_INFINITYF)
|
67
|
|
#define NPY_NANL ((npy_longdouble)NPY_NANF)
|
68
|
|
#define NPY_PZEROL ((npy_longdouble)NPY_PZEROF)
|
69
|
|
#define NPY_NZEROL ((npy_longdouble)NPY_NZEROF)
|
70
|
|
|
71
|
|
/*
|
72
|
|
* Useful constants
|
73
|
|
*/
|
74
|
|
#define NPY_E 2.718281828459045235360287471352662498 /* e */
|
75
|
|
#define NPY_LOG2E 1.442695040888963407359924681001892137 /* log_2 e */
|
76
|
|
#define NPY_LOG10E 0.434294481903251827651128918916605082 /* log_10 e */
|
77
|
|
#define NPY_LOGE2 0.693147180559945309417232121458176568 /* log_e 2 */
|
78
|
|
#define NPY_LOGE10 2.302585092994045684017991454684364208 /* log_e 10 */
|
79
|
|
#define NPY_PI 3.141592653589793238462643383279502884 /* pi */
|
80
|
|
#define NPY_PI_2 1.570796326794896619231321691639751442 /* pi/2 */
|
81
|
|
#define NPY_PI_4 0.785398163397448309615660845819875721 /* pi/4 */
|
82
|
|
#define NPY_1_PI 0.318309886183790671537767526745028724 /* 1/pi */
|
83
|
|
#define NPY_2_PI 0.636619772367581343075535053490057448 /* 2/pi */
|
84
|
|
#define NPY_EULER 0.577215664901532860606512090082402431 /* Euler constant */
|
85
|
|
#define NPY_SQRT2 1.414213562373095048801688724209698079 /* sqrt(2) */
|
86
|
|
#define NPY_SQRT1_2 0.707106781186547524400844362104849039 /* 1/sqrt(2) */
|
87
|
|
|
88
|
|
#define NPY_Ef 2.718281828459045235360287471352662498F /* e */
|
89
|
|
#define NPY_LOG2Ef 1.442695040888963407359924681001892137F /* log_2 e */
|
90
|
|
#define NPY_LOG10Ef 0.434294481903251827651128918916605082F /* log_10 e */
|
91
|
|
#define NPY_LOGE2f 0.693147180559945309417232121458176568F /* log_e 2 */
|
92
|
|
#define NPY_LOGE10f 2.302585092994045684017991454684364208F /* log_e 10 */
|
93
|
|
#define NPY_PIf 3.141592653589793238462643383279502884F /* pi */
|
94
|
|
#define NPY_PI_2f 1.570796326794896619231321691639751442F /* pi/2 */
|
95
|
|
#define NPY_PI_4f 0.785398163397448309615660845819875721F /* pi/4 */
|
96
|
|
#define NPY_1_PIf 0.318309886183790671537767526745028724F /* 1/pi */
|
97
|
|
#define NPY_2_PIf 0.636619772367581343075535053490057448F /* 2/pi */
|
98
|
|
#define NPY_EULERf 0.577215664901532860606512090082402431F /* Euler constant */
|
99
|
|
#define NPY_SQRT2f 1.414213562373095048801688724209698079F /* sqrt(2) */
|
100
|
|
#define NPY_SQRT1_2f 0.707106781186547524400844362104849039F /* 1/sqrt(2) */
|
101
|
|
|
102
|
|
#define NPY_El 2.718281828459045235360287471352662498L /* e */
|
103
|
|
#define NPY_LOG2El 1.442695040888963407359924681001892137L /* log_2 e */
|
104
|
|
#define NPY_LOG10El 0.434294481903251827651128918916605082L /* log_10 e */
|
105
|
|
#define NPY_LOGE2l 0.693147180559945309417232121458176568L /* log_e 2 */
|
106
|
|
#define NPY_LOGE10l 2.302585092994045684017991454684364208L /* log_e 10 */
|
107
|
|
#define NPY_PIl 3.141592653589793238462643383279502884L /* pi */
|
108
|
|
#define NPY_PI_2l 1.570796326794896619231321691639751442L /* pi/2 */
|
109
|
|
#define NPY_PI_4l 0.785398163397448309615660845819875721L /* pi/4 */
|
110
|
|
#define NPY_1_PIl 0.318309886183790671537767526745028724L /* 1/pi */
|
111
|
|
#define NPY_2_PIl 0.636619772367581343075535053490057448L /* 2/pi */
|
112
|
|
#define NPY_EULERl 0.577215664901532860606512090082402431L /* Euler constant */
|
113
|
|
#define NPY_SQRT2l 1.414213562373095048801688724209698079L /* sqrt(2) */
|
114
|
|
#define NPY_SQRT1_2l 0.707106781186547524400844362104849039L /* 1/sqrt(2) */
|
115
|
|
|
116
|
|
/*
|
117
|
|
* Integer functions.
|
118
|
|
*/
|
119
|
|
NPY_INPLACE npy_uint npy_gcdu(npy_uint a, npy_uint b);
|
120
|
|
NPY_INPLACE npy_uint npy_lcmu(npy_uint a, npy_uint b);
|
121
|
|
NPY_INPLACE npy_ulong npy_gcdul(npy_ulong a, npy_ulong b);
|
122
|
|
NPY_INPLACE npy_ulong npy_lcmul(npy_ulong a, npy_ulong b);
|
123
|
|
NPY_INPLACE npy_ulonglong npy_gcdull(npy_ulonglong a, npy_ulonglong b);
|
124
|
|
NPY_INPLACE npy_ulonglong npy_lcmull(npy_ulonglong a, npy_ulonglong b);
|
125
|
|
|
126
|
|
NPY_INPLACE npy_int npy_gcd(npy_int a, npy_int b);
|
127
|
|
NPY_INPLACE npy_int npy_lcm(npy_int a, npy_int b);
|
128
|
|
NPY_INPLACE npy_long npy_gcdl(npy_long a, npy_long b);
|
129
|
|
NPY_INPLACE npy_long npy_lcml(npy_long a, npy_long b);
|
130
|
|
NPY_INPLACE npy_longlong npy_gcdll(npy_longlong a, npy_longlong b);
|
131
|
|
NPY_INPLACE npy_longlong npy_lcmll(npy_longlong a, npy_longlong b);
|
132
|
|
|
133
|
|
NPY_INPLACE npy_ubyte npy_rshiftuhh(npy_ubyte a, npy_ubyte b);
|
134
|
|
NPY_INPLACE npy_ubyte npy_lshiftuhh(npy_ubyte a, npy_ubyte b);
|
135
|
|
NPY_INPLACE npy_ushort npy_rshiftuh(npy_ushort a, npy_ushort b);
|
136
|
|
NPY_INPLACE npy_ushort npy_lshiftuh(npy_ushort a, npy_ushort b);
|
137
|
|
NPY_INPLACE npy_uint npy_rshiftu(npy_uint a, npy_uint b);
|
138
|
|
NPY_INPLACE npy_uint npy_lshiftu(npy_uint a, npy_uint b);
|
139
|
|
NPY_INPLACE npy_ulong npy_rshiftul(npy_ulong a, npy_ulong b);
|
140
|
|
NPY_INPLACE npy_ulong npy_lshiftul(npy_ulong a, npy_ulong b);
|
141
|
|
NPY_INPLACE npy_ulonglong npy_rshiftull(npy_ulonglong a, npy_ulonglong b);
|
142
|
|
NPY_INPLACE npy_ulonglong npy_lshiftull(npy_ulonglong a, npy_ulonglong b);
|
143
|
|
|
144
|
|
NPY_INPLACE npy_byte npy_rshifthh(npy_byte a, npy_byte b);
|
145
|
|
NPY_INPLACE npy_byte npy_lshifthh(npy_byte a, npy_byte b);
|
146
|
|
NPY_INPLACE npy_short npy_rshifth(npy_short a, npy_short b);
|
147
|
|
NPY_INPLACE npy_short npy_lshifth(npy_short a, npy_short b);
|
148
|
|
NPY_INPLACE npy_int npy_rshift(npy_int a, npy_int b);
|
149
|
|
NPY_INPLACE npy_int npy_lshift(npy_int a, npy_int b);
|
150
|
|
NPY_INPLACE npy_long npy_rshiftl(npy_long a, npy_long b);
|
151
|
|
NPY_INPLACE npy_long npy_lshiftl(npy_long a, npy_long b);
|
152
|
|
NPY_INPLACE npy_longlong npy_rshiftll(npy_longlong a, npy_longlong b);
|
153
|
|
NPY_INPLACE npy_longlong npy_lshiftll(npy_longlong a, npy_longlong b);
|
154
|
|
|
155
|
|
/*
|
156
|
|
* avx function has a common API for both sin & cos. This enum is used to
|
157
|
|
* distinguish between the two
|
158
|
|
*/
|
159
|
|
typedef enum {
|
160
|
|
npy_compute_sin,
|
161
|
|
npy_compute_cos
|
162
|
|
} NPY_TRIG_OP;
|
163
|
|
|
164
|
|
/*
|
165
|
|
* C99 double math funcs
|
166
|
|
*/
|
167
|
|
NPY_INPLACE double npy_sin(double x);
|
168
|
|
NPY_INPLACE double npy_cos(double x);
|
169
|
|
NPY_INPLACE double npy_tan(double x);
|
170
|
|
NPY_INPLACE double npy_sinh(double x);
|
171
|
|
NPY_INPLACE double npy_cosh(double x);
|
172
|
|
NPY_INPLACE double npy_tanh(double x);
|
173
|
|
|
174
|
|
NPY_INPLACE double npy_asin(double x);
|
175
|
|
NPY_INPLACE double npy_acos(double x);
|
176
|
|
NPY_INPLACE double npy_atan(double x);
|
177
|
|
|
178
|
|
NPY_INPLACE double npy_log(double x);
|
179
|
|
NPY_INPLACE double npy_log10(double x);
|
180
|
|
NPY_INPLACE double npy_exp(double x);
|
181
|
|
NPY_INPLACE double npy_sqrt(double x);
|
182
|
|
NPY_INPLACE double npy_cbrt(double x);
|
183
|
|
|
184
|
|
NPY_INPLACE double npy_fabs(double x);
|
185
|
|
NPY_INPLACE double npy_ceil(double x);
|
186
|
|
NPY_INPLACE double npy_fmod(double x, double y);
|
187
|
|
NPY_INPLACE double npy_floor(double x);
|
188
|
|
|
189
|
|
NPY_INPLACE double npy_expm1(double x);
|
190
|
|
NPY_INPLACE double npy_log1p(double x);
|
191
|
|
NPY_INPLACE double npy_hypot(double x, double y);
|
192
|
|
NPY_INPLACE double npy_acosh(double x);
|
193
|
|
NPY_INPLACE double npy_asinh(double xx);
|
194
|
|
NPY_INPLACE double npy_atanh(double x);
|
195
|
|
NPY_INPLACE double npy_rint(double x);
|
196
|
|
NPY_INPLACE double npy_trunc(double x);
|
197
|
|
NPY_INPLACE double npy_exp2(double x);
|
198
|
|
NPY_INPLACE double npy_log2(double x);
|
199
|
|
|
200
|
|
NPY_INPLACE double npy_atan2(double x, double y);
|
201
|
|
NPY_INPLACE double npy_pow(double x, double y);
|
202
|
|
NPY_INPLACE double npy_modf(double x, double* y);
|
203
|
|
NPY_INPLACE double npy_frexp(double x, int* y);
|
204
|
|
NPY_INPLACE double npy_ldexp(double n, int y);
|
205
|
|
|
206
|
|
NPY_INPLACE double npy_copysign(double x, double y);
|
207
|
|
double npy_nextafter(double x, double y);
|
208
|
|
double npy_spacing(double x);
|
209
|
|
|
210
|
|
/*
|
211
|
|
* IEEE 754 fpu handling. Those are guaranteed to be macros
|
212
|
|
*/
|
213
|
|
|
214
|
|
/* use builtins to avoid function calls in tight loops
|
215
|
|
* only available if npy_config.h is available (= numpys own build) */
|
216
|
|
#if HAVE___BUILTIN_ISNAN
|
217
|
|
#define npy_isnan(x) __builtin_isnan(x)
|
218
|
|
#else
|
219
|
|
#ifndef NPY_HAVE_DECL_ISNAN
|
220
|
|
#define npy_isnan(x) ((x) != (x))
|
221
|
|
#else
|
222
|
|
#if defined(_MSC_VER) && (_MSC_VER < 1900)
|
223
|
|
#define npy_isnan(x) _isnan((x))
|
224
|
|
#else
|
225
|
|
#define npy_isnan(x) isnan(x)
|
226
|
|
#endif
|
227
|
|
#endif
|
228
|
|
#endif
|
229
|
|
|
230
|
|
|
231
|
|
/* only available if npy_config.h is available (= numpys own build) */
|
232
|
|
#if HAVE___BUILTIN_ISFINITE
|
233
|
|
#define npy_isfinite(x) __builtin_isfinite(x)
|
234
|
|
#else
|
235
|
|
#ifndef NPY_HAVE_DECL_ISFINITE
|
236
|
|
#ifdef _MSC_VER
|
237
|
|
#define npy_isfinite(x) _finite((x))
|
238
|
|
#else
|
239
|
|
#define npy_isfinite(x) !npy_isnan((x) + (-x))
|
240
|
|
#endif
|
241
|
|
#else
|
242
|
|
#define npy_isfinite(x) isfinite((x))
|
243
|
|
#endif
|
244
|
|
#endif
|
245
|
|
|
246
|
|
/* only available if npy_config.h is available (= numpys own build) */
|
247
|
|
#if HAVE___BUILTIN_ISINF
|
248
|
|
#define npy_isinf(x) __builtin_isinf(x)
|
249
|
|
#else
|
250
|
|
#ifndef NPY_HAVE_DECL_ISINF
|
251
|
|
#define npy_isinf(x) (!npy_isfinite(x) && !npy_isnan(x))
|
252
|
|
#else
|
253
|
|
#if defined(_MSC_VER) && (_MSC_VER < 1900)
|
254
|
|
#define npy_isinf(x) (!_finite((x)) && !_isnan((x)))
|
255
|
|
#else
|
256
|
|
#define npy_isinf(x) isinf((x))
|
257
|
|
#endif
|
258
|
|
#endif
|
259
|
|
#endif
|
260
|
|
|
261
|
|
#ifndef NPY_HAVE_DECL_SIGNBIT
|
262
|
|
int _npy_signbit_f(float x);
|
263
|
|
int _npy_signbit_d(double x);
|
264
|
|
int _npy_signbit_ld(long double x);
|
265
|
|
#define npy_signbit(x) \
|
266
|
|
(sizeof (x) == sizeof (long double) ? _npy_signbit_ld (x) \
|
267
|
|
: sizeof (x) == sizeof (double) ? _npy_signbit_d (x) \
|
268
|
|
: _npy_signbit_f (x))
|
269
|
|
#else
|
270
|
|
#define npy_signbit(x) signbit((x))
|
271
|
|
#endif
|
272
|
|
|
273
|
|
/*
|
274
|
|
* float C99 math functions
|
275
|
|
*/
|
276
|
|
NPY_INPLACE float npy_sinf(float x);
|
277
|
|
NPY_INPLACE float npy_cosf(float x);
|
278
|
|
NPY_INPLACE float npy_tanf(float x);
|
279
|
|
NPY_INPLACE float npy_sinhf(float x);
|
280
|
|
NPY_INPLACE float npy_coshf(float x);
|
281
|
|
NPY_INPLACE float npy_tanhf(float x);
|
282
|
|
NPY_INPLACE float npy_fabsf(float x);
|
283
|
|
NPY_INPLACE float npy_floorf(float x);
|
284
|
|
NPY_INPLACE float npy_ceilf(float x);
|
285
|
|
NPY_INPLACE float npy_rintf(float x);
|
286
|
|
NPY_INPLACE float npy_truncf(float x);
|
287
|
|
NPY_INPLACE float npy_sqrtf(float x);
|
288
|
|
NPY_INPLACE float npy_cbrtf(float x);
|
289
|
|
NPY_INPLACE float npy_log10f(float x);
|
290
|
|
NPY_INPLACE float npy_logf(float x);
|
291
|
|
NPY_INPLACE float npy_expf(float x);
|
292
|
|
NPY_INPLACE float npy_expm1f(float x);
|
293
|
|
NPY_INPLACE float npy_asinf(float x);
|
294
|
|
NPY_INPLACE float npy_acosf(float x);
|
295
|
|
NPY_INPLACE float npy_atanf(float x);
|
296
|
|
NPY_INPLACE float npy_asinhf(float x);
|
297
|
|
NPY_INPLACE float npy_acoshf(float x);
|
298
|
|
NPY_INPLACE float npy_atanhf(float x);
|
299
|
|
NPY_INPLACE float npy_log1pf(float x);
|
300
|
|
NPY_INPLACE float npy_exp2f(float x);
|
301
|
|
NPY_INPLACE float npy_log2f(float x);
|
302
|
|
|
303
|
|
NPY_INPLACE float npy_atan2f(float x, float y);
|
304
|
|
NPY_INPLACE float npy_hypotf(float x, float y);
|
305
|
|
NPY_INPLACE float npy_powf(float x, float y);
|
306
|
|
NPY_INPLACE float npy_fmodf(float x, float y);
|
307
|
|
|
308
|
|
NPY_INPLACE float npy_modff(float x, float* y);
|
309
|
|
NPY_INPLACE float npy_frexpf(float x, int* y);
|
310
|
|
NPY_INPLACE float npy_ldexpf(float x, int y);
|
311
|
|
|
312
|
|
NPY_INPLACE float npy_copysignf(float x, float y);
|
313
|
|
float npy_nextafterf(float x, float y);
|
314
|
|
float npy_spacingf(float x);
|
315
|
|
|
316
|
|
/*
|
317
|
|
* long double C99 math functions
|
318
|
|
*/
|
319
|
|
NPY_INPLACE npy_longdouble npy_sinl(npy_longdouble x);
|
320
|
|
NPY_INPLACE npy_longdouble npy_cosl(npy_longdouble x);
|
321
|
|
NPY_INPLACE npy_longdouble npy_tanl(npy_longdouble x);
|
322
|
|
NPY_INPLACE npy_longdouble npy_sinhl(npy_longdouble x);
|
323
|
|
NPY_INPLACE npy_longdouble npy_coshl(npy_longdouble x);
|
324
|
|
NPY_INPLACE npy_longdouble npy_tanhl(npy_longdouble x);
|
325
|
|
NPY_INPLACE npy_longdouble npy_fabsl(npy_longdouble x);
|
326
|
|
NPY_INPLACE npy_longdouble npy_floorl(npy_longdouble x);
|
327
|
|
NPY_INPLACE npy_longdouble npy_ceill(npy_longdouble x);
|
328
|
|
NPY_INPLACE npy_longdouble npy_rintl(npy_longdouble x);
|
329
|
|
NPY_INPLACE npy_longdouble npy_truncl(npy_longdouble x);
|
330
|
|
NPY_INPLACE npy_longdouble npy_sqrtl(npy_longdouble x);
|
331
|
|
NPY_INPLACE npy_longdouble npy_cbrtl(npy_longdouble x);
|
332
|
|
NPY_INPLACE npy_longdouble npy_log10l(npy_longdouble x);
|
333
|
|
NPY_INPLACE npy_longdouble npy_logl(npy_longdouble x);
|
334
|
|
NPY_INPLACE npy_longdouble npy_expl(npy_longdouble x);
|
335
|
|
NPY_INPLACE npy_longdouble npy_expm1l(npy_longdouble x);
|
336
|
|
NPY_INPLACE npy_longdouble npy_asinl(npy_longdouble x);
|
337
|
|
NPY_INPLACE npy_longdouble npy_acosl(npy_longdouble x);
|
338
|
|
NPY_INPLACE npy_longdouble npy_atanl(npy_longdouble x);
|
339
|
|
NPY_INPLACE npy_longdouble npy_asinhl(npy_longdouble x);
|
340
|
|
NPY_INPLACE npy_longdouble npy_acoshl(npy_longdouble x);
|
341
|
|
NPY_INPLACE npy_longdouble npy_atanhl(npy_longdouble x);
|
342
|
|
NPY_INPLACE npy_longdouble npy_log1pl(npy_longdouble x);
|
343
|
|
NPY_INPLACE npy_longdouble npy_exp2l(npy_longdouble x);
|
344
|
|
NPY_INPLACE npy_longdouble npy_log2l(npy_longdouble x);
|
345
|
|
|
346
|
|
NPY_INPLACE npy_longdouble npy_atan2l(npy_longdouble x, npy_longdouble y);
|
347
|
|
NPY_INPLACE npy_longdouble npy_hypotl(npy_longdouble x, npy_longdouble y);
|
348
|
|
NPY_INPLACE npy_longdouble npy_powl(npy_longdouble x, npy_longdouble y);
|
349
|
|
NPY_INPLACE npy_longdouble npy_fmodl(npy_longdouble x, npy_longdouble y);
|
350
|
|
|
351
|
|
NPY_INPLACE npy_longdouble npy_modfl(npy_longdouble x, npy_longdouble* y);
|
352
|
|
NPY_INPLACE npy_longdouble npy_frexpl(npy_longdouble x, int* y);
|
353
|
|
NPY_INPLACE npy_longdouble npy_ldexpl(npy_longdouble x, int y);
|
354
|
|
|
355
|
|
NPY_INPLACE npy_longdouble npy_copysignl(npy_longdouble x, npy_longdouble y);
|
356
|
|
npy_longdouble npy_nextafterl(npy_longdouble x, npy_longdouble y);
|
357
|
|
npy_longdouble npy_spacingl(npy_longdouble x);
|
358
|
|
|
359
|
|
/*
|
360
|
|
* Non standard functions
|
361
|
|
*/
|
362
|
|
NPY_INPLACE double npy_deg2rad(double x);
|
363
|
|
NPY_INPLACE double npy_rad2deg(double x);
|
364
|
|
NPY_INPLACE double npy_logaddexp(double x, double y);
|
365
|
|
NPY_INPLACE double npy_logaddexp2(double x, double y);
|
366
|
|
NPY_INPLACE double npy_divmod(double x, double y, double *modulus);
|
367
|
|
NPY_INPLACE double npy_heaviside(double x, double h0);
|
368
|
|
|
369
|
|
NPY_INPLACE float npy_deg2radf(float x);
|
370
|
|
NPY_INPLACE float npy_rad2degf(float x);
|
371
|
|
NPY_INPLACE float npy_logaddexpf(float x, float y);
|
372
|
|
NPY_INPLACE float npy_logaddexp2f(float x, float y);
|
373
|
|
NPY_INPLACE float npy_divmodf(float x, float y, float *modulus);
|
374
|
|
NPY_INPLACE float npy_heavisidef(float x, float h0);
|
375
|
|
|
376
|
|
NPY_INPLACE npy_longdouble npy_deg2radl(npy_longdouble x);
|
377
|
|
NPY_INPLACE npy_longdouble npy_rad2degl(npy_longdouble x);
|
378
|
|
NPY_INPLACE npy_longdouble npy_logaddexpl(npy_longdouble x, npy_longdouble y);
|
379
|
|
NPY_INPLACE npy_longdouble npy_logaddexp2l(npy_longdouble x, npy_longdouble y);
|
380
|
|
NPY_INPLACE npy_longdouble npy_divmodl(npy_longdouble x, npy_longdouble y,
|
381
|
|
npy_longdouble *modulus);
|
382
|
|
NPY_INPLACE npy_longdouble npy_heavisidel(npy_longdouble x, npy_longdouble h0);
|
383
|
|
|
384
|
|
#define npy_degrees npy_rad2deg
|
385
|
|
#define npy_degreesf npy_rad2degf
|
386
|
|
#define npy_degreesl npy_rad2degl
|
387
|
|
|
388
|
|
#define npy_radians npy_deg2rad
|
389
|
|
#define npy_radiansf npy_deg2radf
|
390
|
|
#define npy_radiansl npy_deg2radl
|
391
|
|
|
392
|
|
/*
|
393
|
|
* Complex declarations
|
394
|
|
*/
|
395
|
|
|
396
|
|
/*
|
397
|
|
* C99 specifies that complex numbers have the same representation as
|
398
|
|
* an array of two elements, where the first element is the real part
|
399
|
|
* and the second element is the imaginary part.
|
400
|
|
*/
|
401
|
|
#define __NPY_CPACK_IMP(x, y, type, ctype) \
|
402
|
|
union { \
|
403
|
|
ctype z; \
|
404
|
|
type a[2]; \
|
405
|
|
} z1;; \
|
406
|
|
\
|
407
|
|
z1.a[0] = (x); \
|
408
|
|
z1.a[1] = (y); \
|
409
|
|
\
|
410
|
|
return z1.z;
|
411
|
|
|
412
|
|
static NPY_INLINE npy_cdouble npy_cpack(double x, double y)
|
413
|
|
{
|
414
|
1
|
__NPY_CPACK_IMP(x, y, double, npy_cdouble);
|
415
|
|
}
|
416
|
|
|
417
|
|
static NPY_INLINE npy_cfloat npy_cpackf(float x, float y)
|
418
|
|
{
|
419
|
1
|
__NPY_CPACK_IMP(x, y, float, npy_cfloat);
|
420
|
|
}
|
421
|
|
|
422
|
|
static NPY_INLINE npy_clongdouble npy_cpackl(npy_longdouble x, npy_longdouble y)
|
423
|
|
{
|
424
|
1
|
__NPY_CPACK_IMP(x, y, npy_longdouble, npy_clongdouble);
|
425
|
|
}
|
426
|
|
#undef __NPY_CPACK_IMP
|
427
|
|
|
428
|
|
/*
|
429
|
|
* Same remark as above, but in the other direction: extract first/second
|
430
|
|
* member of complex number, assuming a C99-compatible representation
|
431
|
|
*
|
432
|
|
* Those are defineds as static inline, and such as a reasonable compiler would
|
433
|
|
* most likely compile this to one or two instructions (on CISC at least)
|
434
|
|
*/
|
435
|
|
#define __NPY_CEXTRACT_IMP(z, index, type, ctype) \
|
436
|
|
union { \
|
437
|
|
ctype z; \
|
438
|
|
type a[2]; \
|
439
|
|
} __z_repr; \
|
440
|
|
__z_repr.z = z; \
|
441
|
|
\
|
442
|
|
return __z_repr.a[index];
|
443
|
|
|
444
|
|
static NPY_INLINE double npy_creal(npy_cdouble z)
|
445
|
|
{
|
446
|
1
|
__NPY_CEXTRACT_IMP(z, 0, double, npy_cdouble);
|
447
|
|
}
|
448
|
|
|
449
|
|
static NPY_INLINE double npy_cimag(npy_cdouble z)
|
450
|
|
{
|
451
|
1
|
__NPY_CEXTRACT_IMP(z, 1, double, npy_cdouble);
|
452
|
|
}
|
453
|
|
|
454
|
|
static NPY_INLINE float npy_crealf(npy_cfloat z)
|
455
|
|
{
|
456
|
1
|
__NPY_CEXTRACT_IMP(z, 0, float, npy_cfloat);
|
457
|
|
}
|
458
|
|
|
459
|
|
static NPY_INLINE float npy_cimagf(npy_cfloat z)
|
460
|
|
{
|
461
|
1
|
__NPY_CEXTRACT_IMP(z, 1, float, npy_cfloat);
|
462
|
|
}
|
463
|
|
|
464
|
|
static NPY_INLINE npy_longdouble npy_creall(npy_clongdouble z)
|
465
|
|
{
|
466
|
1
|
__NPY_CEXTRACT_IMP(z, 0, npy_longdouble, npy_clongdouble);
|
467
|
|
}
|
468
|
|
|
469
|
|
static NPY_INLINE npy_longdouble npy_cimagl(npy_clongdouble z)
|
470
|
|
{
|
471
|
1
|
__NPY_CEXTRACT_IMP(z, 1, npy_longdouble, npy_clongdouble);
|
472
|
|
}
|
473
|
|
#undef __NPY_CEXTRACT_IMP
|
474
|
|
|
475
|
|
/*
|
476
|
|
* Double precision complex functions
|
477
|
|
*/
|
478
|
|
double npy_cabs(npy_cdouble z);
|
479
|
|
double npy_carg(npy_cdouble z);
|
480
|
|
|
481
|
|
npy_cdouble npy_cexp(npy_cdouble z);
|
482
|
|
npy_cdouble npy_clog(npy_cdouble z);
|
483
|
|
npy_cdouble npy_cpow(npy_cdouble x, npy_cdouble y);
|
484
|
|
|
485
|
|
npy_cdouble npy_csqrt(npy_cdouble z);
|
486
|
|
|
487
|
|
npy_cdouble npy_ccos(npy_cdouble z);
|
488
|
|
npy_cdouble npy_csin(npy_cdouble z);
|
489
|
|
npy_cdouble npy_ctan(npy_cdouble z);
|
490
|
|
|
491
|
|
npy_cdouble npy_ccosh(npy_cdouble z);
|
492
|
|
npy_cdouble npy_csinh(npy_cdouble z);
|
493
|
|
npy_cdouble npy_ctanh(npy_cdouble z);
|
494
|
|
|
495
|
|
npy_cdouble npy_cacos(npy_cdouble z);
|
496
|
|
npy_cdouble npy_casin(npy_cdouble z);
|
497
|
|
npy_cdouble npy_catan(npy_cdouble z);
|
498
|
|
|
499
|
|
npy_cdouble npy_cacosh(npy_cdouble z);
|
500
|
|
npy_cdouble npy_casinh(npy_cdouble z);
|
501
|
|
npy_cdouble npy_catanh(npy_cdouble z);
|
502
|
|
|
503
|
|
/*
|
504
|
|
* Single precision complex functions
|
505
|
|
*/
|
506
|
|
float npy_cabsf(npy_cfloat z);
|
507
|
|
float npy_cargf(npy_cfloat z);
|
508
|
|
|
509
|
|
npy_cfloat npy_cexpf(npy_cfloat z);
|
510
|
|
npy_cfloat npy_clogf(npy_cfloat z);
|
511
|
|
npy_cfloat npy_cpowf(npy_cfloat x, npy_cfloat y);
|
512
|
|
|
513
|
|
npy_cfloat npy_csqrtf(npy_cfloat z);
|
514
|
|
|
515
|
|
npy_cfloat npy_ccosf(npy_cfloat z);
|
516
|
|
npy_cfloat npy_csinf(npy_cfloat z);
|
517
|
|
npy_cfloat npy_ctanf(npy_cfloat z);
|
518
|
|
|
519
|
|
npy_cfloat npy_ccoshf(npy_cfloat z);
|
520
|
|
npy_cfloat npy_csinhf(npy_cfloat z);
|
521
|
|
npy_cfloat npy_ctanhf(npy_cfloat z);
|
522
|
|
|
523
|
|
npy_cfloat npy_cacosf(npy_cfloat z);
|
524
|
|
npy_cfloat npy_casinf(npy_cfloat z);
|
525
|
|
npy_cfloat npy_catanf(npy_cfloat z);
|
526
|
|
|
527
|
|
npy_cfloat npy_cacoshf(npy_cfloat z);
|
528
|
|
npy_cfloat npy_casinhf(npy_cfloat z);
|
529
|
|
npy_cfloat npy_catanhf(npy_cfloat z);
|
530
|
|
|
531
|
|
|
532
|
|
/*
|
533
|
|
* Extended precision complex functions
|
534
|
|
*/
|
535
|
|
npy_longdouble npy_cabsl(npy_clongdouble z);
|
536
|
|
npy_longdouble npy_cargl(npy_clongdouble z);
|
537
|
|
|
538
|
|
npy_clongdouble npy_cexpl(npy_clongdouble z);
|
539
|
|
npy_clongdouble npy_clogl(npy_clongdouble z);
|
540
|
|
npy_clongdouble npy_cpowl(npy_clongdouble x, npy_clongdouble y);
|
541
|
|
|
542
|
|
npy_clongdouble npy_csqrtl(npy_clongdouble z);
|
543
|
|
|
544
|
|
npy_clongdouble npy_ccosl(npy_clongdouble z);
|
545
|
|
npy_clongdouble npy_csinl(npy_clongdouble z);
|
546
|
|
npy_clongdouble npy_ctanl(npy_clongdouble z);
|
547
|
|
|
548
|
|
npy_clongdouble npy_ccoshl(npy_clongdouble z);
|
549
|
|
npy_clongdouble npy_csinhl(npy_clongdouble z);
|
550
|
|
npy_clongdouble npy_ctanhl(npy_clongdouble z);
|
551
|
|
|
552
|
|
npy_clongdouble npy_cacosl(npy_clongdouble z);
|
553
|
|
npy_clongdouble npy_casinl(npy_clongdouble z);
|
554
|
|
npy_clongdouble npy_catanl(npy_clongdouble z);
|
555
|
|
|
556
|
|
npy_clongdouble npy_cacoshl(npy_clongdouble z);
|
557
|
|
npy_clongdouble npy_casinhl(npy_clongdouble z);
|
558
|
|
npy_clongdouble npy_catanhl(npy_clongdouble z);
|
559
|
|
|
560
|
|
|
561
|
|
/*
|
562
|
|
* Functions that set the floating point error
|
563
|
|
* status word.
|
564
|
|
*/
|
565
|
|
|
566
|
|
/*
|
567
|
|
* platform-dependent code translates floating point
|
568
|
|
* status to an integer sum of these values
|
569
|
|
*/
|
570
|
|
#define NPY_FPE_DIVIDEBYZERO 1
|
571
|
|
#define NPY_FPE_OVERFLOW 2
|
572
|
|
#define NPY_FPE_UNDERFLOW 4
|
573
|
|
#define NPY_FPE_INVALID 8
|
574
|
|
|
575
|
|
int npy_clear_floatstatus_barrier(char*);
|
576
|
|
int npy_get_floatstatus_barrier(char*);
|
577
|
|
/*
|
578
|
|
* use caution with these - clang and gcc8.1 are known to reorder calls
|
579
|
|
* to this form of the function which can defeat the check. The _barrier
|
580
|
|
* form of the call is preferable, where the argument is
|
581
|
|
* (char*)&local_variable
|
582
|
|
*/
|
583
|
|
int npy_clear_floatstatus(void);
|
584
|
|
int npy_get_floatstatus(void);
|
585
|
|
|
586
|
|
void npy_set_floatstatus_divbyzero(void);
|
587
|
|
void npy_set_floatstatus_overflow(void);
|
588
|
|
void npy_set_floatstatus_underflow(void);
|
589
|
|
void npy_set_floatstatus_invalid(void);
|
590
|
|
|
591
|
|
#ifdef __cplusplus
|
592
|
|
}
|
593
|
|
#endif
|
594
|
|
|
595
|
|
#if NPY_INLINE_MATH
|
596
|
|
#include "npy_math_internal.h"
|
597
|
|
#endif
|
598
|
|
|
599
|
|
#endif
|