1
|
|
#ifndef NDARRAYTYPES_H
|
2
|
|
#define NDARRAYTYPES_H
|
3
|
|
|
4
|
|
#include "npy_common.h"
|
5
|
|
#include "npy_endian.h"
|
6
|
|
#include "npy_cpu.h"
|
7
|
|
#include "utils.h"
|
8
|
|
|
9
|
|
#define NPY_NO_EXPORT NPY_VISIBILITY_HIDDEN
|
10
|
|
|
11
|
|
/* Only use thread if configured in config and python supports it */
|
12
|
|
#if defined WITH_THREAD && !NPY_NO_SMP
|
13
|
|
#define NPY_ALLOW_THREADS 1
|
14
|
|
#else
|
15
|
|
#define NPY_ALLOW_THREADS 0
|
16
|
|
#endif
|
17
|
|
|
18
|
|
#ifndef __has_extension
|
19
|
|
#define __has_extension(x) 0
|
20
|
|
#endif
|
21
|
|
|
22
|
|
#if !defined(_NPY_NO_DEPRECATIONS) && \
|
23
|
|
((defined(__GNUC__)&& __GNUC__ >= 6) || \
|
24
|
|
__has_extension(attribute_deprecated_with_message))
|
25
|
|
#define NPY_ATTR_DEPRECATE(text) __attribute__ ((deprecated (text)))
|
26
|
|
#else
|
27
|
|
#define NPY_ATTR_DEPRECATE(text)
|
28
|
|
#endif
|
29
|
|
|
30
|
|
/*
|
31
|
|
* There are several places in the code where an array of dimensions
|
32
|
|
* is allocated statically. This is the size of that static
|
33
|
|
* allocation.
|
34
|
|
*
|
35
|
|
* The array creation itself could have arbitrary dimensions but all
|
36
|
|
* the places where static allocation is used would need to be changed
|
37
|
|
* to dynamic (including inside of several structures)
|
38
|
|
*/
|
39
|
|
|
40
|
|
#define NPY_MAXDIMS 32
|
41
|
|
#define NPY_MAXARGS 32
|
42
|
|
|
43
|
|
/* Used for Converter Functions "O&" code in ParseTuple */
|
44
|
|
#define NPY_FAIL 0
|
45
|
|
#define NPY_SUCCEED 1
|
46
|
|
|
47
|
|
/*
|
48
|
|
* Binary compatibility version number. This number is increased
|
49
|
|
* whenever the C-API is changed such that binary compatibility is
|
50
|
|
* broken, i.e. whenever a recompile of extension modules is needed.
|
51
|
|
*/
|
52
|
|
#define NPY_VERSION NPY_ABI_VERSION
|
53
|
|
|
54
|
|
/*
|
55
|
|
* Minor API version. This number is increased whenever a change is
|
56
|
|
* made to the C-API -- whether it breaks binary compatibility or not.
|
57
|
|
* Some changes, such as adding a function pointer to the end of the
|
58
|
|
* function table, can be made without breaking binary compatibility.
|
59
|
|
* In this case, only the NPY_FEATURE_VERSION (*not* NPY_VERSION)
|
60
|
|
* would be increased. Whenever binary compatibility is broken, both
|
61
|
|
* NPY_VERSION and NPY_FEATURE_VERSION should be increased.
|
62
|
|
*/
|
63
|
|
#define NPY_FEATURE_VERSION NPY_API_VERSION
|
64
|
|
|
65
|
|
enum NPY_TYPES { NPY_BOOL=0,
|
66
|
|
NPY_BYTE, NPY_UBYTE,
|
67
|
|
NPY_SHORT, NPY_USHORT,
|
68
|
|
NPY_INT, NPY_UINT,
|
69
|
|
NPY_LONG, NPY_ULONG,
|
70
|
|
NPY_LONGLONG, NPY_ULONGLONG,
|
71
|
|
NPY_FLOAT, NPY_DOUBLE, NPY_LONGDOUBLE,
|
72
|
|
NPY_CFLOAT, NPY_CDOUBLE, NPY_CLONGDOUBLE,
|
73
|
|
NPY_OBJECT=17,
|
74
|
|
NPY_STRING, NPY_UNICODE,
|
75
|
|
NPY_VOID,
|
76
|
|
/*
|
77
|
|
* New 1.6 types appended, may be integrated
|
78
|
|
* into the above in 2.0.
|
79
|
|
*/
|
80
|
|
NPY_DATETIME, NPY_TIMEDELTA, NPY_HALF,
|
81
|
|
|
82
|
|
NPY_NTYPES,
|
83
|
|
NPY_NOTYPE,
|
84
|
|
NPY_CHAR NPY_ATTR_DEPRECATE("Use NPY_STRING"),
|
85
|
|
NPY_USERDEF=256, /* leave room for characters */
|
86
|
|
|
87
|
|
/* The number of types not including the new 1.6 types */
|
88
|
|
NPY_NTYPES_ABI_COMPATIBLE=21
|
89
|
|
};
|
90
|
|
#ifdef _MSC_VER
|
91
|
|
#pragma deprecated(NPY_CHAR)
|
92
|
|
#endif
|
93
|
|
|
94
|
|
/* basetype array priority */
|
95
|
|
#define NPY_PRIORITY 0.0
|
96
|
|
|
97
|
|
/* default subtype priority */
|
98
|
|
#define NPY_SUBTYPE_PRIORITY 1.0
|
99
|
|
|
100
|
|
/* default scalar priority */
|
101
|
|
#define NPY_SCALAR_PRIORITY -1000000.0
|
102
|
|
|
103
|
|
/* How many floating point types are there (excluding half) */
|
104
|
|
#define NPY_NUM_FLOATTYPE 3
|
105
|
|
|
106
|
|
/*
|
107
|
|
* These characters correspond to the array type and the struct
|
108
|
|
* module
|
109
|
|
*/
|
110
|
|
|
111
|
|
enum NPY_TYPECHAR {
|
112
|
|
NPY_BOOLLTR = '?',
|
113
|
|
NPY_BYTELTR = 'b',
|
114
|
|
NPY_UBYTELTR = 'B',
|
115
|
|
NPY_SHORTLTR = 'h',
|
116
|
|
NPY_USHORTLTR = 'H',
|
117
|
|
NPY_INTLTR = 'i',
|
118
|
|
NPY_UINTLTR = 'I',
|
119
|
|
NPY_LONGLTR = 'l',
|
120
|
|
NPY_ULONGLTR = 'L',
|
121
|
|
NPY_LONGLONGLTR = 'q',
|
122
|
|
NPY_ULONGLONGLTR = 'Q',
|
123
|
|
NPY_HALFLTR = 'e',
|
124
|
|
NPY_FLOATLTR = 'f',
|
125
|
|
NPY_DOUBLELTR = 'd',
|
126
|
|
NPY_LONGDOUBLELTR = 'g',
|
127
|
|
NPY_CFLOATLTR = 'F',
|
128
|
|
NPY_CDOUBLELTR = 'D',
|
129
|
|
NPY_CLONGDOUBLELTR = 'G',
|
130
|
|
NPY_OBJECTLTR = 'O',
|
131
|
|
NPY_STRINGLTR = 'S',
|
132
|
|
NPY_STRINGLTR2 = 'a',
|
133
|
|
NPY_UNICODELTR = 'U',
|
134
|
|
NPY_VOIDLTR = 'V',
|
135
|
|
NPY_DATETIMELTR = 'M',
|
136
|
|
NPY_TIMEDELTALTR = 'm',
|
137
|
|
NPY_CHARLTR = 'c',
|
138
|
|
|
139
|
|
/*
|
140
|
|
* No Descriptor, just a define -- this let's
|
141
|
|
* Python users specify an array of integers
|
142
|
|
* large enough to hold a pointer on the
|
143
|
|
* platform
|
144
|
|
*/
|
145
|
|
NPY_INTPLTR = 'p',
|
146
|
|
NPY_UINTPLTR = 'P',
|
147
|
|
|
148
|
|
/*
|
149
|
|
* These are for dtype 'kinds', not dtype 'typecodes'
|
150
|
|
* as the above are for.
|
151
|
|
*/
|
152
|
|
NPY_GENBOOLLTR ='b',
|
153
|
|
NPY_SIGNEDLTR = 'i',
|
154
|
|
NPY_UNSIGNEDLTR = 'u',
|
155
|
|
NPY_FLOATINGLTR = 'f',
|
156
|
|
NPY_COMPLEXLTR = 'c'
|
157
|
|
};
|
158
|
|
|
159
|
|
/*
|
160
|
|
* Changing this may break Numpy API compatibility
|
161
|
|
* due to changing offsets in PyArray_ArrFuncs, so be
|
162
|
|
* careful. Here we have reused the mergesort slot for
|
163
|
|
* any kind of stable sort, the actual implementation will
|
164
|
|
* depend on the data type.
|
165
|
|
*/
|
166
|
|
typedef enum {
|
167
|
|
NPY_QUICKSORT=0,
|
168
|
|
NPY_HEAPSORT=1,
|
169
|
|
NPY_MERGESORT=2,
|
170
|
|
NPY_STABLESORT=2,
|
171
|
|
} NPY_SORTKIND;
|
172
|
|
#define NPY_NSORTS (NPY_STABLESORT + 1)
|
173
|
|
|
174
|
|
|
175
|
|
typedef enum {
|
176
|
|
NPY_INTROSELECT=0
|
177
|
|
} NPY_SELECTKIND;
|
178
|
|
#define NPY_NSELECTS (NPY_INTROSELECT + 1)
|
179
|
|
|
180
|
|
|
181
|
|
typedef enum {
|
182
|
|
NPY_SEARCHLEFT=0,
|
183
|
|
NPY_SEARCHRIGHT=1
|
184
|
|
} NPY_SEARCHSIDE;
|
185
|
|
#define NPY_NSEARCHSIDES (NPY_SEARCHRIGHT + 1)
|
186
|
|
|
187
|
|
|
188
|
|
typedef enum {
|
189
|
|
NPY_NOSCALAR=-1,
|
190
|
|
NPY_BOOL_SCALAR,
|
191
|
|
NPY_INTPOS_SCALAR,
|
192
|
|
NPY_INTNEG_SCALAR,
|
193
|
|
NPY_FLOAT_SCALAR,
|
194
|
|
NPY_COMPLEX_SCALAR,
|
195
|
|
NPY_OBJECT_SCALAR
|
196
|
|
} NPY_SCALARKIND;
|
197
|
|
#define NPY_NSCALARKINDS (NPY_OBJECT_SCALAR + 1)
|
198
|
|
|
199
|
|
/* For specifying array memory layout or iteration order */
|
200
|
|
typedef enum {
|
201
|
|
/* Fortran order if inputs are all Fortran, C otherwise */
|
202
|
|
NPY_ANYORDER=-1,
|
203
|
|
/* C order */
|
204
|
|
NPY_CORDER=0,
|
205
|
|
/* Fortran order */
|
206
|
|
NPY_FORTRANORDER=1,
|
207
|
|
/* An order as close to the inputs as possible */
|
208
|
|
NPY_KEEPORDER=2
|
209
|
|
} NPY_ORDER;
|
210
|
|
|
211
|
|
/* For specifying allowed casting in operations which support it */
|
212
|
|
typedef enum {
|
213
|
|
/* Only allow identical types */
|
214
|
|
NPY_NO_CASTING=0,
|
215
|
|
/* Allow identical and byte swapped types */
|
216
|
|
NPY_EQUIV_CASTING=1,
|
217
|
|
/* Only allow safe casts */
|
218
|
|
NPY_SAFE_CASTING=2,
|
219
|
|
/* Allow safe casts or casts within the same kind */
|
220
|
|
NPY_SAME_KIND_CASTING=3,
|
221
|
|
/* Allow any casts */
|
222
|
|
NPY_UNSAFE_CASTING=4
|
223
|
|
} NPY_CASTING;
|
224
|
|
|
225
|
|
typedef enum {
|
226
|
|
NPY_CLIP=0,
|
227
|
|
NPY_WRAP=1,
|
228
|
|
NPY_RAISE=2
|
229
|
|
} NPY_CLIPMODE;
|
230
|
|
|
231
|
|
/* The special not-a-time (NaT) value */
|
232
|
|
#define NPY_DATETIME_NAT NPY_MIN_INT64
|
233
|
|
|
234
|
|
/*
|
235
|
|
* Upper bound on the length of a DATETIME ISO 8601 string
|
236
|
|
* YEAR: 21 (64-bit year)
|
237
|
|
* MONTH: 3
|
238
|
|
* DAY: 3
|
239
|
|
* HOURS: 3
|
240
|
|
* MINUTES: 3
|
241
|
|
* SECONDS: 3
|
242
|
|
* ATTOSECONDS: 1 + 3*6
|
243
|
|
* TIMEZONE: 5
|
244
|
|
* NULL TERMINATOR: 1
|
245
|
|
*/
|
246
|
|
#define NPY_DATETIME_MAX_ISO8601_STRLEN (21 + 3*5 + 1 + 3*6 + 6 + 1)
|
247
|
|
|
248
|
|
/* The FR in the unit names stands for frequency */
|
249
|
|
typedef enum {
|
250
|
|
/* Force signed enum type, must be -1 for code compatibility */
|
251
|
|
NPY_FR_ERROR = -1, /* error or undetermined */
|
252
|
|
|
253
|
|
/* Start of valid units */
|
254
|
|
NPY_FR_Y = 0, /* Years */
|
255
|
|
NPY_FR_M = 1, /* Months */
|
256
|
|
NPY_FR_W = 2, /* Weeks */
|
257
|
|
/* Gap where 1.6 NPY_FR_B (value 3) was */
|
258
|
|
NPY_FR_D = 4, /* Days */
|
259
|
|
NPY_FR_h = 5, /* hours */
|
260
|
|
NPY_FR_m = 6, /* minutes */
|
261
|
|
NPY_FR_s = 7, /* seconds */
|
262
|
|
NPY_FR_ms = 8, /* milliseconds */
|
263
|
|
NPY_FR_us = 9, /* microseconds */
|
264
|
|
NPY_FR_ns = 10, /* nanoseconds */
|
265
|
|
NPY_FR_ps = 11, /* picoseconds */
|
266
|
|
NPY_FR_fs = 12, /* femtoseconds */
|
267
|
|
NPY_FR_as = 13, /* attoseconds */
|
268
|
|
NPY_FR_GENERIC = 14 /* unbound units, can convert to anything */
|
269
|
|
} NPY_DATETIMEUNIT;
|
270
|
|
|
271
|
|
/*
|
272
|
|
* NOTE: With the NPY_FR_B gap for 1.6 ABI compatibility, NPY_DATETIME_NUMUNITS
|
273
|
|
* is technically one more than the actual number of units.
|
274
|
|
*/
|
275
|
|
#define NPY_DATETIME_NUMUNITS (NPY_FR_GENERIC + 1)
|
276
|
|
#define NPY_DATETIME_DEFAULTUNIT NPY_FR_GENERIC
|
277
|
|
|
278
|
|
/*
|
279
|
|
* Business day conventions for mapping invalid business
|
280
|
|
* days to valid business days.
|
281
|
|
*/
|
282
|
|
typedef enum {
|
283
|
|
/* Go forward in time to the following business day. */
|
284
|
|
NPY_BUSDAY_FORWARD,
|
285
|
|
NPY_BUSDAY_FOLLOWING = NPY_BUSDAY_FORWARD,
|
286
|
|
/* Go backward in time to the preceding business day. */
|
287
|
|
NPY_BUSDAY_BACKWARD,
|
288
|
|
NPY_BUSDAY_PRECEDING = NPY_BUSDAY_BACKWARD,
|
289
|
|
/*
|
290
|
|
* Go forward in time to the following business day, unless it
|
291
|
|
* crosses a month boundary, in which case go backward
|
292
|
|
*/
|
293
|
|
NPY_BUSDAY_MODIFIEDFOLLOWING,
|
294
|
|
/*
|
295
|
|
* Go backward in time to the preceding business day, unless it
|
296
|
|
* crosses a month boundary, in which case go forward.
|
297
|
|
*/
|
298
|
|
NPY_BUSDAY_MODIFIEDPRECEDING,
|
299
|
|
/* Produce a NaT for non-business days. */
|
300
|
|
NPY_BUSDAY_NAT,
|
301
|
|
/* Raise an exception for non-business days. */
|
302
|
|
NPY_BUSDAY_RAISE
|
303
|
|
} NPY_BUSDAY_ROLL;
|
304
|
|
|
305
|
|
/************************************************************
|
306
|
|
* NumPy Auxiliary Data for inner loops, sort functions, etc.
|
307
|
|
************************************************************/
|
308
|
|
|
309
|
|
/*
|
310
|
|
* When creating an auxiliary data struct, this should always appear
|
311
|
|
* as the first member, like this:
|
312
|
|
*
|
313
|
|
* typedef struct {
|
314
|
|
* NpyAuxData base;
|
315
|
|
* double constant;
|
316
|
|
* } constant_multiplier_aux_data;
|
317
|
|
*/
|
318
|
|
typedef struct NpyAuxData_tag NpyAuxData;
|
319
|
|
|
320
|
|
/* Function pointers for freeing or cloning auxiliary data */
|
321
|
|
typedef void (NpyAuxData_FreeFunc) (NpyAuxData *);
|
322
|
|
typedef NpyAuxData *(NpyAuxData_CloneFunc) (NpyAuxData *);
|
323
|
|
|
324
|
|
struct NpyAuxData_tag {
|
325
|
|
NpyAuxData_FreeFunc *free;
|
326
|
|
NpyAuxData_CloneFunc *clone;
|
327
|
|
/* To allow for a bit of expansion without breaking the ABI */
|
328
|
|
void *reserved[2];
|
329
|
|
};
|
330
|
|
|
331
|
|
/* Macros to use for freeing and cloning auxiliary data */
|
332
|
|
#define NPY_AUXDATA_FREE(auxdata) \
|
333
|
|
do { \
|
334
|
|
if ((auxdata) != NULL) { \
|
335
|
|
(auxdata)->free(auxdata); \
|
336
|
|
} \
|
337
|
|
} while(0)
|
338
|
|
#define NPY_AUXDATA_CLONE(auxdata) \
|
339
|
|
((auxdata)->clone(auxdata))
|
340
|
|
|
341
|
|
#define NPY_ERR(str) fprintf(stderr, #str); fflush(stderr);
|
342
|
|
#define NPY_ERR2(str) fprintf(stderr, str); fflush(stderr);
|
343
|
|
|
344
|
|
/*
|
345
|
|
* Macros to define how array, and dimension/strides data is
|
346
|
|
* allocated.
|
347
|
|
*/
|
348
|
|
|
349
|
|
/* Data buffer - PyDataMem_NEW/FREE/RENEW are in multiarraymodule.c */
|
350
|
|
|
351
|
|
#define NPY_USE_PYMEM 1
|
352
|
|
|
353
|
|
|
354
|
|
#if NPY_USE_PYMEM == 1
|
355
|
|
/* use the Raw versions which are safe to call with the GIL released */
|
356
|
|
#define PyArray_malloc PyMem_RawMalloc
|
357
|
|
#define PyArray_free PyMem_RawFree
|
358
|
|
#define PyArray_realloc PyMem_RawRealloc
|
359
|
|
#else
|
360
|
|
#define PyArray_malloc malloc
|
361
|
|
#define PyArray_free free
|
362
|
|
#define PyArray_realloc realloc
|
363
|
|
#endif
|
364
|
|
|
365
|
|
/* Dimensions and strides */
|
366
|
|
#define PyDimMem_NEW(size) \
|
367
|
|
((npy_intp *)PyArray_malloc(size*sizeof(npy_intp)))
|
368
|
|
|
369
|
|
#define PyDimMem_FREE(ptr) PyArray_free(ptr)
|
370
|
|
|
371
|
|
#define PyDimMem_RENEW(ptr,size) \
|
372
|
|
((npy_intp *)PyArray_realloc(ptr,size*sizeof(npy_intp)))
|
373
|
|
|
374
|
|
/* forward declaration */
|
375
|
|
struct _PyArray_Descr;
|
376
|
|
|
377
|
|
/* These must deal with unaligned and swapped data if necessary */
|
378
|
|
typedef PyObject * (PyArray_GetItemFunc) (void *, void *);
|
379
|
|
typedef int (PyArray_SetItemFunc)(PyObject *, void *, void *);
|
380
|
|
|
381
|
|
typedef void (PyArray_CopySwapNFunc)(void *, npy_intp, void *, npy_intp,
|
382
|
|
npy_intp, int, void *);
|
383
|
|
|
384
|
|
typedef void (PyArray_CopySwapFunc)(void *, void *, int, void *);
|
385
|
|
typedef npy_bool (PyArray_NonzeroFunc)(void *, void *);
|
386
|
|
|
387
|
|
|
388
|
|
/*
|
389
|
|
* These assume aligned and notswapped data -- a buffer will be used
|
390
|
|
* before or contiguous data will be obtained
|
391
|
|
*/
|
392
|
|
|
393
|
|
typedef int (PyArray_CompareFunc)(const void *, const void *, void *);
|
394
|
|
typedef int (PyArray_ArgFunc)(void*, npy_intp, npy_intp*, void *);
|
395
|
|
|
396
|
|
typedef void (PyArray_DotFunc)(void *, npy_intp, void *, npy_intp, void *,
|
397
|
|
npy_intp, void *);
|
398
|
|
|
399
|
|
typedef void (PyArray_VectorUnaryFunc)(void *, void *, npy_intp, void *,
|
400
|
|
void *);
|
401
|
|
|
402
|
|
/*
|
403
|
|
* XXX the ignore argument should be removed next time the API version
|
404
|
|
* is bumped. It used to be the separator.
|
405
|
|
*/
|
406
|
|
typedef int (PyArray_ScanFunc)(FILE *fp, void *dptr,
|
407
|
|
char *ignore, struct _PyArray_Descr *);
|
408
|
|
typedef int (PyArray_FromStrFunc)(char *s, void *dptr, char **endptr,
|
409
|
|
struct _PyArray_Descr *);
|
410
|
|
|
411
|
|
typedef int (PyArray_FillFunc)(void *, npy_intp, void *);
|
412
|
|
|
413
|
|
typedef int (PyArray_SortFunc)(void *, npy_intp, void *);
|
414
|
|
typedef int (PyArray_ArgSortFunc)(void *, npy_intp *, npy_intp, void *);
|
415
|
|
typedef int (PyArray_PartitionFunc)(void *, npy_intp, npy_intp,
|
416
|
|
npy_intp *, npy_intp *,
|
417
|
|
void *);
|
418
|
|
typedef int (PyArray_ArgPartitionFunc)(void *, npy_intp *, npy_intp, npy_intp,
|
419
|
|
npy_intp *, npy_intp *,
|
420
|
|
void *);
|
421
|
|
|
422
|
|
typedef int (PyArray_FillWithScalarFunc)(void *, npy_intp, void *, void *);
|
423
|
|
|
424
|
|
typedef int (PyArray_ScalarKindFunc)(void *);
|
425
|
|
|
426
|
|
typedef void (PyArray_FastClipFunc)(void *in, npy_intp n_in, void *min,
|
427
|
|
void *max, void *out);
|
428
|
|
typedef void (PyArray_FastPutmaskFunc)(void *in, void *mask, npy_intp n_in,
|
429
|
|
void *values, npy_intp nv);
|
430
|
|
typedef int (PyArray_FastTakeFunc)(void *dest, void *src, npy_intp *indarray,
|
431
|
|
npy_intp nindarray, npy_intp n_outer,
|
432
|
|
npy_intp m_middle, npy_intp nelem,
|
433
|
|
NPY_CLIPMODE clipmode);
|
434
|
|
|
435
|
|
typedef struct {
|
436
|
|
npy_intp *ptr;
|
437
|
|
int len;
|
438
|
|
} PyArray_Dims;
|
439
|
|
|
440
|
|
typedef struct {
|
441
|
|
/*
|
442
|
|
* Functions to cast to most other standard types
|
443
|
|
* Can have some NULL entries. The types
|
444
|
|
* DATETIME, TIMEDELTA, and HALF go into the castdict
|
445
|
|
* even though they are built-in.
|
446
|
|
*/
|
447
|
|
PyArray_VectorUnaryFunc *cast[NPY_NTYPES_ABI_COMPATIBLE];
|
448
|
|
|
449
|
|
/* The next four functions *cannot* be NULL */
|
450
|
|
|
451
|
|
/*
|
452
|
|
* Functions to get and set items with standard Python types
|
453
|
|
* -- not array scalars
|
454
|
|
*/
|
455
|
|
PyArray_GetItemFunc *getitem;
|
456
|
|
PyArray_SetItemFunc *setitem;
|
457
|
|
|
458
|
|
/*
|
459
|
|
* Copy and/or swap data. Memory areas may not overlap
|
460
|
|
* Use memmove first if they might
|
461
|
|
*/
|
462
|
|
PyArray_CopySwapNFunc *copyswapn;
|
463
|
|
PyArray_CopySwapFunc *copyswap;
|
464
|
|
|
465
|
|
/*
|
466
|
|
* Function to compare items
|
467
|
|
* Can be NULL
|
468
|
|
*/
|
469
|
|
PyArray_CompareFunc *compare;
|
470
|
|
|
471
|
|
/*
|
472
|
|
* Function to select largest
|
473
|
|
* Can be NULL
|
474
|
|
*/
|
475
|
|
PyArray_ArgFunc *argmax;
|
476
|
|
|
477
|
|
/*
|
478
|
|
* Function to compute dot product
|
479
|
|
* Can be NULL
|
480
|
|
*/
|
481
|
|
PyArray_DotFunc *dotfunc;
|
482
|
|
|
483
|
|
/*
|
484
|
|
* Function to scan an ASCII file and
|
485
|
|
* place a single value plus possible separator
|
486
|
|
* Can be NULL
|
487
|
|
*/
|
488
|
|
PyArray_ScanFunc *scanfunc;
|
489
|
|
|
490
|
|
/*
|
491
|
|
* Function to read a single value from a string
|
492
|
|
* and adjust the pointer; Can be NULL
|
493
|
|
*/
|
494
|
|
PyArray_FromStrFunc *fromstr;
|
495
|
|
|
496
|
|
/*
|
497
|
|
* Function to determine if data is zero or not
|
498
|
|
* If NULL a default version is
|
499
|
|
* used at Registration time.
|
500
|
|
*/
|
501
|
|
PyArray_NonzeroFunc *nonzero;
|
502
|
|
|
503
|
|
/*
|
504
|
|
* Used for arange. Should return 0 on success
|
505
|
|
* and -1 on failure.
|
506
|
|
* Can be NULL.
|
507
|
|
*/
|
508
|
|
PyArray_FillFunc *fill;
|
509
|
|
|
510
|
|
/*
|
511
|
|
* Function to fill arrays with scalar values
|
512
|
|
* Can be NULL
|
513
|
|
*/
|
514
|
|
PyArray_FillWithScalarFunc *fillwithscalar;
|
515
|
|
|
516
|
|
/*
|
517
|
|
* Sorting functions
|
518
|
|
* Can be NULL
|
519
|
|
*/
|
520
|
|
PyArray_SortFunc *sort[NPY_NSORTS];
|
521
|
|
PyArray_ArgSortFunc *argsort[NPY_NSORTS];
|
522
|
|
|
523
|
|
/*
|
524
|
|
* Dictionary of additional casting functions
|
525
|
|
* PyArray_VectorUnaryFuncs
|
526
|
|
* which can be populated to support casting
|
527
|
|
* to other registered types. Can be NULL
|
528
|
|
*/
|
529
|
|
PyObject *castdict;
|
530
|
|
|
531
|
|
/*
|
532
|
|
* Functions useful for generalizing
|
533
|
|
* the casting rules.
|
534
|
|
* Can be NULL;
|
535
|
|
*/
|
536
|
|
PyArray_ScalarKindFunc *scalarkind;
|
537
|
|
int **cancastscalarkindto;
|
538
|
|
int *cancastto;
|
539
|
|
|
540
|
|
PyArray_FastClipFunc *fastclip;
|
541
|
|
PyArray_FastPutmaskFunc *fastputmask;
|
542
|
|
PyArray_FastTakeFunc *fasttake;
|
543
|
|
|
544
|
|
/*
|
545
|
|
* Function to select smallest
|
546
|
|
* Can be NULL
|
547
|
|
*/
|
548
|
|
PyArray_ArgFunc *argmin;
|
549
|
|
|
550
|
|
} PyArray_ArrFuncs;
|
551
|
|
|
552
|
|
/* The item must be reference counted when it is inserted or extracted. */
|
553
|
|
#define NPY_ITEM_REFCOUNT 0x01
|
554
|
|
/* Same as needing REFCOUNT */
|
555
|
|
#define NPY_ITEM_HASOBJECT 0x01
|
556
|
|
/* Convert to list for pickling */
|
557
|
|
#define NPY_LIST_PICKLE 0x02
|
558
|
|
/* The item is a POINTER */
|
559
|
|
#define NPY_ITEM_IS_POINTER 0x04
|
560
|
|
/* memory needs to be initialized for this data-type */
|
561
|
|
#define NPY_NEEDS_INIT 0x08
|
562
|
|
/* operations need Python C-API so don't give-up thread. */
|
563
|
|
#define NPY_NEEDS_PYAPI 0x10
|
564
|
|
/* Use f.getitem when extracting elements of this data-type */
|
565
|
|
#define NPY_USE_GETITEM 0x20
|
566
|
|
/* Use f.setitem when setting creating 0-d array from this data-type.*/
|
567
|
|
#define NPY_USE_SETITEM 0x40
|
568
|
|
/* A sticky flag specifically for structured arrays */
|
569
|
|
#define NPY_ALIGNED_STRUCT 0x80
|
570
|
|
|
571
|
|
/*
|
572
|
|
*These are inherited for global data-type if any data-types in the
|
573
|
|
* field have them
|
574
|
|
*/
|
575
|
|
#define NPY_FROM_FIELDS (NPY_NEEDS_INIT | NPY_LIST_PICKLE | \
|
576
|
|
NPY_ITEM_REFCOUNT | NPY_NEEDS_PYAPI)
|
577
|
|
|
578
|
|
#define NPY_OBJECT_DTYPE_FLAGS (NPY_LIST_PICKLE | NPY_USE_GETITEM | \
|
579
|
|
NPY_ITEM_IS_POINTER | NPY_ITEM_REFCOUNT | \
|
580
|
|
NPY_NEEDS_INIT | NPY_NEEDS_PYAPI)
|
581
|
|
|
582
|
|
#define PyDataType_FLAGCHK(dtype, flag) \
|
583
|
|
(((dtype)->flags & (flag)) == (flag))
|
584
|
|
|
585
|
|
#define PyDataType_REFCHK(dtype) \
|
586
|
|
PyDataType_FLAGCHK(dtype, NPY_ITEM_REFCOUNT)
|
587
|
|
|
588
|
|
typedef struct _PyArray_Descr {
|
589
|
|
PyObject_HEAD
|
590
|
|
/*
|
591
|
|
* the type object representing an
|
592
|
|
* instance of this type -- should not
|
593
|
|
* be two type_numbers with the same type
|
594
|
|
* object.
|
595
|
|
*/
|
596
|
|
PyTypeObject *typeobj;
|
597
|
|
/* kind for this type */
|
598
|
|
char kind;
|
599
|
|
/* unique-character representing this type */
|
600
|
|
char type;
|
601
|
|
/*
|
602
|
|
* '>' (big), '<' (little), '|'
|
603
|
|
* (not-applicable), or '=' (native).
|
604
|
|
*/
|
605
|
|
char byteorder;
|
606
|
|
/* flags describing data type */
|
607
|
|
char flags;
|
608
|
|
/* number representing this type */
|
609
|
|
int type_num;
|
610
|
|
/* element size (itemsize) for this type */
|
611
|
|
int elsize;
|
612
|
|
/* alignment needed for this type */
|
613
|
|
int alignment;
|
614
|
|
/*
|
615
|
|
* Non-NULL if this type is
|
616
|
|
* is an array (C-contiguous)
|
617
|
|
* of some other type
|
618
|
|
*/
|
619
|
|
struct _arr_descr *subarray;
|
620
|
|
/*
|
621
|
|
* The fields dictionary for this type
|
622
|
|
* For statically defined descr this
|
623
|
|
* is always Py_None
|
624
|
|
*/
|
625
|
|
PyObject *fields;
|
626
|
|
/*
|
627
|
|
* An ordered tuple of field names or NULL
|
628
|
|
* if no fields are defined
|
629
|
|
*/
|
630
|
|
PyObject *names;
|
631
|
|
/*
|
632
|
|
* a table of functions specific for each
|
633
|
|
* basic data descriptor
|
634
|
|
*/
|
635
|
|
PyArray_ArrFuncs *f;
|
636
|
|
/* Metadata about this dtype */
|
637
|
|
PyObject *metadata;
|
638
|
|
/*
|
639
|
|
* Metadata specific to the C implementation
|
640
|
|
* of the particular dtype. This was added
|
641
|
|
* for NumPy 1.7.0.
|
642
|
|
*/
|
643
|
|
NpyAuxData *c_metadata;
|
644
|
|
/* Cached hash value (-1 if not yet computed).
|
645
|
|
* This was added for NumPy 2.0.0.
|
646
|
|
*/
|
647
|
|
npy_hash_t hash;
|
648
|
|
} PyArray_Descr;
|
649
|
|
|
650
|
|
typedef struct _arr_descr {
|
651
|
|
PyArray_Descr *base;
|
652
|
|
PyObject *shape; /* a tuple */
|
653
|
|
} PyArray_ArrayDescr;
|
654
|
|
|
655
|
|
/*
|
656
|
|
* The main array object structure.
|
657
|
|
*
|
658
|
|
* It has been recommended to use the inline functions defined below
|
659
|
|
* (PyArray_DATA and friends) to access fields here for a number of
|
660
|
|
* releases. Direct access to the members themselves is deprecated.
|
661
|
|
* To ensure that your code does not use deprecated access,
|
662
|
|
* #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
|
663
|
|
* (or NPY_1_8_API_VERSION or higher as required).
|
664
|
|
*/
|
665
|
|
/* This struct will be moved to a private header in a future release */
|
666
|
|
typedef struct tagPyArrayObject_fields {
|
667
|
|
PyObject_HEAD
|
668
|
|
/* Pointer to the raw data buffer */
|
669
|
|
char *data;
|
670
|
|
/* The number of dimensions, also called 'ndim' */
|
671
|
|
int nd;
|
672
|
|
/* The size in each dimension, also called 'shape' */
|
673
|
|
npy_intp *dimensions;
|
674
|
|
/*
|
675
|
|
* Number of bytes to jump to get to the
|
676
|
|
* next element in each dimension
|
677
|
|
*/
|
678
|
|
npy_intp *strides;
|
679
|
|
/*
|
680
|
|
* This object is decref'd upon
|
681
|
|
* deletion of array. Except in the
|
682
|
|
* case of WRITEBACKIFCOPY which has
|
683
|
|
* special handling.
|
684
|
|
*
|
685
|
|
* For views it points to the original
|
686
|
|
* array, collapsed so no chains of
|
687
|
|
* views occur.
|
688
|
|
*
|
689
|
|
* For creation from buffer object it
|
690
|
|
* points to an object that should be
|
691
|
|
* decref'd on deletion
|
692
|
|
*
|
693
|
|
* For WRITEBACKIFCOPY flag this is an
|
694
|
|
* array to-be-updated upon calling
|
695
|
|
* PyArray_ResolveWritebackIfCopy
|
696
|
|
*/
|
697
|
|
PyObject *base;
|
698
|
|
/* Pointer to type structure */
|
699
|
|
PyArray_Descr *descr;
|
700
|
|
/* Flags describing array -- see below */
|
701
|
|
int flags;
|
702
|
|
/* For weak references */
|
703
|
|
PyObject *weakreflist;
|
704
|
|
} PyArrayObject_fields;
|
705
|
|
|
706
|
|
/*
|
707
|
|
* To hide the implementation details, we only expose
|
708
|
|
* the Python struct HEAD.
|
709
|
|
*/
|
710
|
|
#if !defined(NPY_NO_DEPRECATED_API) || \
|
711
|
|
(NPY_NO_DEPRECATED_API < NPY_1_7_API_VERSION)
|
712
|
|
/*
|
713
|
|
* Can't put this in npy_deprecated_api.h like the others.
|
714
|
|
* PyArrayObject field access is deprecated as of NumPy 1.7.
|
715
|
|
*/
|
716
|
|
typedef PyArrayObject_fields PyArrayObject;
|
717
|
|
#else
|
718
|
|
typedef struct tagPyArrayObject {
|
719
|
|
PyObject_HEAD
|
720
|
|
} PyArrayObject;
|
721
|
|
#endif
|
722
|
|
|
723
|
|
#define NPY_SIZEOF_PYARRAYOBJECT (sizeof(PyArrayObject_fields))
|
724
|
|
|
725
|
|
/* Array Flags Object */
|
726
|
|
typedef struct PyArrayFlagsObject {
|
727
|
|
PyObject_HEAD
|
728
|
|
PyObject *arr;
|
729
|
|
int flags;
|
730
|
|
} PyArrayFlagsObject;
|
731
|
|
|
732
|
|
/* Mirrors buffer object to ptr */
|
733
|
|
|
734
|
|
typedef struct {
|
735
|
|
PyObject_HEAD
|
736
|
|
PyObject *base;
|
737
|
|
void *ptr;
|
738
|
|
npy_intp len;
|
739
|
|
int flags;
|
740
|
|
} PyArray_Chunk;
|
741
|
|
|
742
|
|
typedef struct {
|
743
|
|
NPY_DATETIMEUNIT base;
|
744
|
|
int num;
|
745
|
|
} PyArray_DatetimeMetaData;
|
746
|
|
|
747
|
|
typedef struct {
|
748
|
|
NpyAuxData base;
|
749
|
|
PyArray_DatetimeMetaData meta;
|
750
|
|
} PyArray_DatetimeDTypeMetaData;
|
751
|
|
|
752
|
|
/*
|
753
|
|
* This structure contains an exploded view of a date-time value.
|
754
|
|
* NaT is represented by year == NPY_DATETIME_NAT.
|
755
|
|
*/
|
756
|
|
typedef struct {
|
757
|
|
npy_int64 year;
|
758
|
|
npy_int32 month, day, hour, min, sec, us, ps, as;
|
759
|
|
} npy_datetimestruct;
|
760
|
|
|
761
|
|
/* This is not used internally. */
|
762
|
|
typedef struct {
|
763
|
|
npy_int64 day;
|
764
|
|
npy_int32 sec, us, ps, as;
|
765
|
|
} npy_timedeltastruct;
|
766
|
|
|
767
|
|
typedef int (PyArray_FinalizeFunc)(PyArrayObject *, PyObject *);
|
768
|
|
|
769
|
|
/*
|
770
|
|
* Means c-style contiguous (last index varies the fastest). The data
|
771
|
|
* elements right after each other.
|
772
|
|
*
|
773
|
|
* This flag may be requested in constructor functions.
|
774
|
|
* This flag may be tested for in PyArray_FLAGS(arr).
|
775
|
|
*/
|
776
|
|
#define NPY_ARRAY_C_CONTIGUOUS 0x0001
|
777
|
|
|
778
|
|
/*
|
779
|
|
* Set if array is a contiguous Fortran array: the first index varies
|
780
|
|
* the fastest in memory (strides array is reverse of C-contiguous
|
781
|
|
* array)
|
782
|
|
*
|
783
|
|
* This flag may be requested in constructor functions.
|
784
|
|
* This flag may be tested for in PyArray_FLAGS(arr).
|
785
|
|
*/
|
786
|
|
#define NPY_ARRAY_F_CONTIGUOUS 0x0002
|
787
|
|
|
788
|
|
/*
|
789
|
|
* Note: all 0-d arrays are C_CONTIGUOUS and F_CONTIGUOUS. If a
|
790
|
|
* 1-d array is C_CONTIGUOUS it is also F_CONTIGUOUS. Arrays with
|
791
|
|
* more then one dimension can be C_CONTIGUOUS and F_CONTIGUOUS
|
792
|
|
* at the same time if they have either zero or one element.
|
793
|
|
* If NPY_RELAXED_STRIDES_CHECKING is set, a higher dimensional
|
794
|
|
* array is always C_CONTIGUOUS and F_CONTIGUOUS if it has zero elements
|
795
|
|
* and the array is contiguous if ndarray.squeeze() is contiguous.
|
796
|
|
* I.e. dimensions for which `ndarray.shape[dimension] == 1` are
|
797
|
|
* ignored.
|
798
|
|
*/
|
799
|
|
|
800
|
|
/*
|
801
|
|
* If set, the array owns the data: it will be free'd when the array
|
802
|
|
* is deleted.
|
803
|
|
*
|
804
|
|
* This flag may be tested for in PyArray_FLAGS(arr).
|
805
|
|
*/
|
806
|
|
#define NPY_ARRAY_OWNDATA 0x0004
|
807
|
|
|
808
|
|
/*
|
809
|
|
* An array never has the next four set; they're only used as parameter
|
810
|
|
* flags to the various FromAny functions
|
811
|
|
*
|
812
|
|
* This flag may be requested in constructor functions.
|
813
|
|
*/
|
814
|
|
|
815
|
|
/* Cause a cast to occur regardless of whether or not it is safe. */
|
816
|
|
#define NPY_ARRAY_FORCECAST 0x0010
|
817
|
|
|
818
|
|
/*
|
819
|
|
* Always copy the array. Returned arrays are always CONTIGUOUS,
|
820
|
|
* ALIGNED, and WRITEABLE.
|
821
|
|
*
|
822
|
|
* This flag may be requested in constructor functions.
|
823
|
|
*/
|
824
|
|
#define NPY_ARRAY_ENSURECOPY 0x0020
|
825
|
|
|
826
|
|
/*
|
827
|
|
* Make sure the returned array is a base-class ndarray
|
828
|
|
*
|
829
|
|
* This flag may be requested in constructor functions.
|
830
|
|
*/
|
831
|
|
#define NPY_ARRAY_ENSUREARRAY 0x0040
|
832
|
|
|
833
|
|
/*
|
834
|
|
* Make sure that the strides are in units of the element size Needed
|
835
|
|
* for some operations with record-arrays.
|
836
|
|
*
|
837
|
|
* This flag may be requested in constructor functions.
|
838
|
|
*/
|
839
|
|
#define NPY_ARRAY_ELEMENTSTRIDES 0x0080
|
840
|
|
|
841
|
|
/*
|
842
|
|
* Array data is aligned on the appropriate memory address for the type
|
843
|
|
* stored according to how the compiler would align things (e.g., an
|
844
|
|
* array of integers (4 bytes each) starts on a memory address that's
|
845
|
|
* a multiple of 4)
|
846
|
|
*
|
847
|
|
* This flag may be requested in constructor functions.
|
848
|
|
* This flag may be tested for in PyArray_FLAGS(arr).
|
849
|
|
*/
|
850
|
|
#define NPY_ARRAY_ALIGNED 0x0100
|
851
|
|
|
852
|
|
/*
|
853
|
|
* Array data has the native endianness
|
854
|
|
*
|
855
|
|
* This flag may be requested in constructor functions.
|
856
|
|
*/
|
857
|
|
#define NPY_ARRAY_NOTSWAPPED 0x0200
|
858
|
|
|
859
|
|
/*
|
860
|
|
* Array data is writeable
|
861
|
|
*
|
862
|
|
* This flag may be requested in constructor functions.
|
863
|
|
* This flag may be tested for in PyArray_FLAGS(arr).
|
864
|
|
*/
|
865
|
|
#define NPY_ARRAY_WRITEABLE 0x0400
|
866
|
|
|
867
|
|
/*
|
868
|
|
* If this flag is set, then base contains a pointer to an array of
|
869
|
|
* the same size that should be updated with the current contents of
|
870
|
|
* this array when PyArray_ResolveWritebackIfCopy is called.
|
871
|
|
*
|
872
|
|
* This flag may be requested in constructor functions.
|
873
|
|
* This flag may be tested for in PyArray_FLAGS(arr).
|
874
|
|
*/
|
875
|
|
#define NPY_ARRAY_UPDATEIFCOPY 0x1000 /* Deprecated in 1.14 */
|
876
|
|
#define NPY_ARRAY_WRITEBACKIFCOPY 0x2000
|
877
|
|
|
878
|
|
/*
|
879
|
|
* NOTE: there are also internal flags defined in multiarray/arrayobject.h,
|
880
|
|
* which start at bit 31 and work down.
|
881
|
|
*/
|
882
|
|
|
883
|
|
#define NPY_ARRAY_BEHAVED (NPY_ARRAY_ALIGNED | \
|
884
|
|
NPY_ARRAY_WRITEABLE)
|
885
|
|
#define NPY_ARRAY_BEHAVED_NS (NPY_ARRAY_ALIGNED | \
|
886
|
|
NPY_ARRAY_WRITEABLE | \
|
887
|
|
NPY_ARRAY_NOTSWAPPED)
|
888
|
|
#define NPY_ARRAY_CARRAY (NPY_ARRAY_C_CONTIGUOUS | \
|
889
|
|
NPY_ARRAY_BEHAVED)
|
890
|
|
#define NPY_ARRAY_CARRAY_RO (NPY_ARRAY_C_CONTIGUOUS | \
|
891
|
|
NPY_ARRAY_ALIGNED)
|
892
|
|
#define NPY_ARRAY_FARRAY (NPY_ARRAY_F_CONTIGUOUS | \
|
893
|
|
NPY_ARRAY_BEHAVED)
|
894
|
|
#define NPY_ARRAY_FARRAY_RO (NPY_ARRAY_F_CONTIGUOUS | \
|
895
|
|
NPY_ARRAY_ALIGNED)
|
896
|
|
#define NPY_ARRAY_DEFAULT (NPY_ARRAY_CARRAY)
|
897
|
|
#define NPY_ARRAY_IN_ARRAY (NPY_ARRAY_CARRAY_RO)
|
898
|
|
#define NPY_ARRAY_OUT_ARRAY (NPY_ARRAY_CARRAY)
|
899
|
|
#define NPY_ARRAY_INOUT_ARRAY (NPY_ARRAY_CARRAY | \
|
900
|
|
NPY_ARRAY_UPDATEIFCOPY)
|
901
|
|
#define NPY_ARRAY_INOUT_ARRAY2 (NPY_ARRAY_CARRAY | \
|
902
|
|
NPY_ARRAY_WRITEBACKIFCOPY)
|
903
|
|
#define NPY_ARRAY_IN_FARRAY (NPY_ARRAY_FARRAY_RO)
|
904
|
|
#define NPY_ARRAY_OUT_FARRAY (NPY_ARRAY_FARRAY)
|
905
|
|
#define NPY_ARRAY_INOUT_FARRAY (NPY_ARRAY_FARRAY | \
|
906
|
|
NPY_ARRAY_UPDATEIFCOPY)
|
907
|
|
#define NPY_ARRAY_INOUT_FARRAY2 (NPY_ARRAY_FARRAY | \
|
908
|
|
NPY_ARRAY_WRITEBACKIFCOPY)
|
909
|
|
|
910
|
|
#define NPY_ARRAY_UPDATE_ALL (NPY_ARRAY_C_CONTIGUOUS | \
|
911
|
|
NPY_ARRAY_F_CONTIGUOUS | \
|
912
|
|
NPY_ARRAY_ALIGNED)
|
913
|
|
|
914
|
|
/* This flag is for the array interface, not PyArrayObject */
|
915
|
|
#define NPY_ARR_HAS_DESCR 0x0800
|
916
|
|
|
917
|
|
|
918
|
|
|
919
|
|
|
920
|
|
/*
|
921
|
|
* Size of internal buffers used for alignment Make BUFSIZE a multiple
|
922
|
|
* of sizeof(npy_cdouble) -- usually 16 so that ufunc buffers are aligned
|
923
|
|
*/
|
924
|
|
#define NPY_MIN_BUFSIZE ((int)sizeof(npy_cdouble))
|
925
|
|
#define NPY_MAX_BUFSIZE (((int)sizeof(npy_cdouble))*1000000)
|
926
|
|
#define NPY_BUFSIZE 8192
|
927
|
|
/* buffer stress test size: */
|
928
|
|
/*#define NPY_BUFSIZE 17*/
|
929
|
|
|
930
|
|
#define PyArray_MAX(a,b) (((a)>(b))?(a):(b))
|
931
|
|
#define PyArray_MIN(a,b) (((a)<(b))?(a):(b))
|
932
|
|
#define PyArray_CLT(p,q) ((((p).real==(q).real) ? ((p).imag < (q).imag) : \
|
933
|
|
((p).real < (q).real)))
|
934
|
|
#define PyArray_CGT(p,q) ((((p).real==(q).real) ? ((p).imag > (q).imag) : \
|
935
|
|
((p).real > (q).real)))
|
936
|
|
#define PyArray_CLE(p,q) ((((p).real==(q).real) ? ((p).imag <= (q).imag) : \
|
937
|
|
((p).real <= (q).real)))
|
938
|
|
#define PyArray_CGE(p,q) ((((p).real==(q).real) ? ((p).imag >= (q).imag) : \
|
939
|
|
((p).real >= (q).real)))
|
940
|
|
#define PyArray_CEQ(p,q) (((p).real==(q).real) && ((p).imag == (q).imag))
|
941
|
|
#define PyArray_CNE(p,q) (((p).real!=(q).real) || ((p).imag != (q).imag))
|
942
|
|
|
943
|
|
/*
|
944
|
|
* C API: consists of Macros and functions. The MACROS are defined
|
945
|
|
* here.
|
946
|
|
*/
|
947
|
|
|
948
|
|
|
949
|
|
#define PyArray_ISCONTIGUOUS(m) PyArray_CHKFLAGS((m), NPY_ARRAY_C_CONTIGUOUS)
|
950
|
|
#define PyArray_ISWRITEABLE(m) PyArray_CHKFLAGS((m), NPY_ARRAY_WRITEABLE)
|
951
|
|
#define PyArray_ISALIGNED(m) PyArray_CHKFLAGS((m), NPY_ARRAY_ALIGNED)
|
952
|
|
|
953
|
|
#define PyArray_IS_C_CONTIGUOUS(m) PyArray_CHKFLAGS((m), NPY_ARRAY_C_CONTIGUOUS)
|
954
|
|
#define PyArray_IS_F_CONTIGUOUS(m) PyArray_CHKFLAGS((m), NPY_ARRAY_F_CONTIGUOUS)
|
955
|
|
|
956
|
|
/* the variable is used in some places, so always define it */
|
957
|
|
#define NPY_BEGIN_THREADS_DEF PyThreadState *_save=NULL;
|
958
|
|
#if NPY_ALLOW_THREADS
|
959
|
|
#define NPY_BEGIN_ALLOW_THREADS Py_BEGIN_ALLOW_THREADS
|
960
|
|
#define NPY_END_ALLOW_THREADS Py_END_ALLOW_THREADS
|
961
|
|
#define NPY_BEGIN_THREADS do {_save = PyEval_SaveThread();} while (0);
|
962
|
|
#define NPY_END_THREADS do { if (_save) \
|
963
|
|
{ PyEval_RestoreThread(_save); _save = NULL;} } while (0);
|
964
|
|
#define NPY_BEGIN_THREADS_THRESHOLDED(loop_size) do { if ((loop_size) > 500) \
|
965
|
|
{ _save = PyEval_SaveThread();} } while (0);
|
966
|
|
|
967
|
|
#define NPY_BEGIN_THREADS_DESCR(dtype) \
|
968
|
|
do {if (!(PyDataType_FLAGCHK((dtype), NPY_NEEDS_PYAPI))) \
|
969
|
|
NPY_BEGIN_THREADS;} while (0);
|
970
|
|
|
971
|
|
#define NPY_END_THREADS_DESCR(dtype) \
|
972
|
|
do {if (!(PyDataType_FLAGCHK((dtype), NPY_NEEDS_PYAPI))) \
|
973
|
|
NPY_END_THREADS; } while (0);
|
974
|
|
|
975
|
|
#define NPY_ALLOW_C_API_DEF PyGILState_STATE __save__;
|
976
|
|
#define NPY_ALLOW_C_API do {__save__ = PyGILState_Ensure();} while (0);
|
977
|
|
#define NPY_DISABLE_C_API do {PyGILState_Release(__save__);} while (0);
|
978
|
|
#else
|
979
|
|
#define NPY_BEGIN_ALLOW_THREADS
|
980
|
|
#define NPY_END_ALLOW_THREADS
|
981
|
|
#define NPY_BEGIN_THREADS
|
982
|
|
#define NPY_END_THREADS
|
983
|
|
#define NPY_BEGIN_THREADS_THRESHOLDED(loop_size)
|
984
|
|
#define NPY_BEGIN_THREADS_DESCR(dtype)
|
985
|
|
#define NPY_END_THREADS_DESCR(dtype)
|
986
|
|
#define NPY_ALLOW_C_API_DEF
|
987
|
|
#define NPY_ALLOW_C_API
|
988
|
|
#define NPY_DISABLE_C_API
|
989
|
|
#endif
|
990
|
|
|
991
|
|
/**********************************
|
992
|
|
* The nditer object, added in 1.6
|
993
|
|
**********************************/
|
994
|
|
|
995
|
|
/* The actual structure of the iterator is an internal detail */
|
996
|
|
typedef struct NpyIter_InternalOnly NpyIter;
|
997
|
|
|
998
|
|
/* Iterator function pointers that may be specialized */
|
999
|
|
typedef int (NpyIter_IterNextFunc)(NpyIter *iter);
|
1000
|
|
typedef void (NpyIter_GetMultiIndexFunc)(NpyIter *iter,
|
1001
|
|
npy_intp *outcoords);
|
1002
|
|
|
1003
|
|
/*** Global flags that may be passed to the iterator constructors ***/
|
1004
|
|
|
1005
|
|
/* Track an index representing C order */
|
1006
|
|
#define NPY_ITER_C_INDEX 0x00000001
|
1007
|
|
/* Track an index representing Fortran order */
|
1008
|
|
#define NPY_ITER_F_INDEX 0x00000002
|
1009
|
|
/* Track a multi-index */
|
1010
|
|
#define NPY_ITER_MULTI_INDEX 0x00000004
|
1011
|
|
/* User code external to the iterator does the 1-dimensional innermost loop */
|
1012
|
|
#define NPY_ITER_EXTERNAL_LOOP 0x00000008
|
1013
|
|
/* Convert all the operands to a common data type */
|
1014
|
|
#define NPY_ITER_COMMON_DTYPE 0x00000010
|
1015
|
|
/* Operands may hold references, requiring API access during iteration */
|
1016
|
|
#define NPY_ITER_REFS_OK 0x00000020
|
1017
|
|
/* Zero-sized operands should be permitted, iteration checks IterSize for 0 */
|
1018
|
|
#define NPY_ITER_ZEROSIZE_OK 0x00000040
|
1019
|
|
/* Permits reductions (size-0 stride with dimension size > 1) */
|
1020
|
|
#define NPY_ITER_REDUCE_OK 0x00000080
|
1021
|
|
/* Enables sub-range iteration */
|
1022
|
|
#define NPY_ITER_RANGED 0x00000100
|
1023
|
|
/* Enables buffering */
|
1024
|
|
#define NPY_ITER_BUFFERED 0x00000200
|
1025
|
|
/* When buffering is enabled, grows the inner loop if possible */
|
1026
|
|
#define NPY_ITER_GROWINNER 0x00000400
|
1027
|
|
/* Delay allocation of buffers until first Reset* call */
|
1028
|
|
#define NPY_ITER_DELAY_BUFALLOC 0x00000800
|
1029
|
|
/* When NPY_KEEPORDER is specified, disable reversing negative-stride axes */
|
1030
|
|
#define NPY_ITER_DONT_NEGATE_STRIDES 0x00001000
|
1031
|
|
/*
|
1032
|
|
* If output operands overlap with other operands (based on heuristics that
|
1033
|
|
* has false positives but no false negatives), make temporary copies to
|
1034
|
|
* eliminate overlap.
|
1035
|
|
*/
|
1036
|
|
#define NPY_ITER_COPY_IF_OVERLAP 0x00002000
|
1037
|
|
|
1038
|
|
/*** Per-operand flags that may be passed to the iterator constructors ***/
|
1039
|
|
|
1040
|
|
/* The operand will be read from and written to */
|
1041
|
|
#define NPY_ITER_READWRITE 0x00010000
|
1042
|
|
/* The operand will only be read from */
|
1043
|
|
#define NPY_ITER_READONLY 0x00020000
|
1044
|
|
/* The operand will only be written to */
|
1045
|
|
#define NPY_ITER_WRITEONLY 0x00040000
|
1046
|
|
/* The operand's data must be in native byte order */
|
1047
|
|
#define NPY_ITER_NBO 0x00080000
|
1048
|
|
/* The operand's data must be aligned */
|
1049
|
|
#define NPY_ITER_ALIGNED 0x00100000
|
1050
|
|
/* The operand's data must be contiguous (within the inner loop) */
|
1051
|
|
#define NPY_ITER_CONTIG 0x00200000
|
1052
|
|
/* The operand may be copied to satisfy requirements */
|
1053
|
|
#define NPY_ITER_COPY 0x00400000
|
1054
|
|
/* The operand may be copied with WRITEBACKIFCOPY to satisfy requirements */
|
1055
|
|
#define NPY_ITER_UPDATEIFCOPY 0x00800000
|
1056
|
|
/* Allocate the operand if it is NULL */
|
1057
|
|
#define NPY_ITER_ALLOCATE 0x01000000
|
1058
|
|
/* If an operand is allocated, don't use any subtype */
|
1059
|
|
#define NPY_ITER_NO_SUBTYPE 0x02000000
|
1060
|
|
/* This is a virtual array slot, operand is NULL but temporary data is there */
|
1061
|
|
#define NPY_ITER_VIRTUAL 0x04000000
|
1062
|
|
/* Require that the dimension match the iterator dimensions exactly */
|
1063
|
|
#define NPY_ITER_NO_BROADCAST 0x08000000
|
1064
|
|
/* A mask is being used on this array, affects buffer -> array copy */
|
1065
|
|
#define NPY_ITER_WRITEMASKED 0x10000000
|
1066
|
|
/* This array is the mask for all WRITEMASKED operands */
|
1067
|
|
#define NPY_ITER_ARRAYMASK 0x20000000
|
1068
|
|
/* Assume iterator order data access for COPY_IF_OVERLAP */
|
1069
|
|
#define NPY_ITER_OVERLAP_ASSUME_ELEMENTWISE 0x40000000
|
1070
|
|
|
1071
|
|
#define NPY_ITER_GLOBAL_FLAGS 0x0000ffff
|
1072
|
|
#define NPY_ITER_PER_OP_FLAGS 0xffff0000
|
1073
|
|
|
1074
|
|
|
1075
|
|
/*****************************
|
1076
|
|
* Basic iterator object
|
1077
|
|
*****************************/
|
1078
|
|
|
1079
|
|
/* FWD declaration */
|
1080
|
|
typedef struct PyArrayIterObject_tag PyArrayIterObject;
|
1081
|
|
|
1082
|
|
/*
|
1083
|
|
* type of the function which translates a set of coordinates to a
|
1084
|
|
* pointer to the data
|
1085
|
|
*/
|
1086
|
|
typedef char* (*npy_iter_get_dataptr_t)(
|
1087
|
|
PyArrayIterObject* iter, const npy_intp*);
|
1088
|
|
|
1089
|
|
struct PyArrayIterObject_tag {
|
1090
|
|
PyObject_HEAD
|
1091
|
|
int nd_m1; /* number of dimensions - 1 */
|
1092
|
|
npy_intp index, size;
|
1093
|
|
npy_intp coordinates[NPY_MAXDIMS];/* N-dimensional loop */
|
1094
|
|
npy_intp dims_m1[NPY_MAXDIMS]; /* ao->dimensions - 1 */
|
1095
|
|
npy_intp strides[NPY_MAXDIMS]; /* ao->strides or fake */
|
1096
|
|
npy_intp backstrides[NPY_MAXDIMS];/* how far to jump back */
|
1097
|
|
npy_intp factors[NPY_MAXDIMS]; /* shape factors */
|
1098
|
|
PyArrayObject *ao;
|
1099
|
|
char *dataptr; /* pointer to current item*/
|
1100
|
|
npy_bool contiguous;
|
1101
|
|
|
1102
|
|
npy_intp bounds[NPY_MAXDIMS][2];
|
1103
|
|
npy_intp limits[NPY_MAXDIMS][2];
|
1104
|
|
npy_intp limits_sizes[NPY_MAXDIMS];
|
1105
|
|
npy_iter_get_dataptr_t translate;
|
1106
|
|
} ;
|
1107
|
|
|
1108
|
|
|
1109
|
|
/* Iterator API */
|
1110
|
|
#define PyArrayIter_Check(op) PyObject_TypeCheck((op), &PyArrayIter_Type)
|
1111
|
|
|
1112
|
|
#define _PyAIT(it) ((PyArrayIterObject *)(it))
|
1113
|
|
#define PyArray_ITER_RESET(it) do { \
|
1114
|
|
_PyAIT(it)->index = 0; \
|
1115
|
|
_PyAIT(it)->dataptr = PyArray_BYTES(_PyAIT(it)->ao); \
|
1116
|
|
memset(_PyAIT(it)->coordinates, 0, \
|
1117
|
|
(_PyAIT(it)->nd_m1+1)*sizeof(npy_intp)); \
|
1118
|
|
} while (0)
|
1119
|
|
|
1120
|
|
#define _PyArray_ITER_NEXT1(it) do { \
|
1121
|
|
(it)->dataptr += _PyAIT(it)->strides[0]; \
|
1122
|
|
(it)->coordinates[0]++; \
|
1123
|
|
} while (0)
|
1124
|
|
|
1125
|
|
#define _PyArray_ITER_NEXT2(it) do { \
|
1126
|
|
if ((it)->coordinates[1] < (it)->dims_m1[1]) { \
|
1127
|
|
(it)->coordinates[1]++; \
|
1128
|
|
(it)->dataptr += (it)->strides[1]; \
|
1129
|
|
} \
|
1130
|
|
else { \
|
1131
|
|
(it)->coordinates[1] = 0; \
|
1132
|
|
(it)->coordinates[0]++; \
|
1133
|
|
(it)->dataptr += (it)->strides[0] - \
|
1134
|
|
(it)->backstrides[1]; \
|
1135
|
|
} \
|
1136
|
|
} while (0)
|
1137
|
|
|
1138
|
|
#define PyArray_ITER_NEXT(it) do { \
|
1139
|
|
_PyAIT(it)->index++; \
|
1140
|
|
if (_PyAIT(it)->nd_m1 == 0) { \
|
1141
|
|
_PyArray_ITER_NEXT1(_PyAIT(it)); \
|
1142
|
|
} \
|
1143
|
|
else if (_PyAIT(it)->contiguous) \
|
1144
|
|
_PyAIT(it)->dataptr += PyArray_DESCR(_PyAIT(it)->ao)->elsize; \
|
1145
|
|
else if (_PyAIT(it)->nd_m1 == 1) { \
|
1146
|
|
_PyArray_ITER_NEXT2(_PyAIT(it)); \
|
1147
|
|
} \
|
1148
|
|
else { \
|
1149
|
|
int __npy_i; \
|
1150
|
|
for (__npy_i=_PyAIT(it)->nd_m1; __npy_i >= 0; __npy_i--) { \
|
1151
|
|
if (_PyAIT(it)->coordinates[__npy_i] < \
|
1152
|
|
_PyAIT(it)->dims_m1[__npy_i]) { \
|
1153
|
|
_PyAIT(it)->coordinates[__npy_i]++; \
|
1154
|
|
_PyAIT(it)->dataptr += \
|
1155
|
|
_PyAIT(it)->strides[__npy_i]; \
|
1156
|
|
break; \
|
1157
|
|
} \
|
1158
|
|
else { \
|
1159
|
|
_PyAIT(it)->coordinates[__npy_i] = 0; \
|
1160
|
|
_PyAIT(it)->dataptr -= \
|
1161
|
|
_PyAIT(it)->backstrides[__npy_i]; \
|
1162
|
|
} \
|
1163
|
|
} \
|
1164
|
|
} \
|
1165
|
|
} while (0)
|
1166
|
|
|
1167
|
|
#define PyArray_ITER_GOTO(it, destination) do { \
|
1168
|
|
int __npy_i; \
|
1169
|
|
_PyAIT(it)->index = 0; \
|
1170
|
|
_PyAIT(it)->dataptr = PyArray_BYTES(_PyAIT(it)->ao); \
|
1171
|
|
for (__npy_i = _PyAIT(it)->nd_m1; __npy_i>=0; __npy_i--) { \
|
1172
|
|
if (destination[__npy_i] < 0) { \
|
1173
|
|
destination[__npy_i] += \
|
1174
|
|
_PyAIT(it)->dims_m1[__npy_i]+1; \
|
1175
|
|
} \
|
1176
|
|
_PyAIT(it)->dataptr += destination[__npy_i] * \
|
1177
|
|
_PyAIT(it)->strides[__npy_i]; \
|
1178
|
|
_PyAIT(it)->coordinates[__npy_i] = \
|
1179
|
|
destination[__npy_i]; \
|
1180
|
|
_PyAIT(it)->index += destination[__npy_i] * \
|
1181
|
|
( __npy_i==_PyAIT(it)->nd_m1 ? 1 : \
|
1182
|
|
_PyAIT(it)->dims_m1[__npy_i+1]+1) ; \
|
1183
|
|
} \
|
1184
|
|
} while (0)
|
1185
|
|
|
1186
|
|
#define PyArray_ITER_GOTO1D(it, ind) do { \
|
1187
|
|
int __npy_i; \
|
1188
|
|
npy_intp __npy_ind = (npy_intp)(ind); \
|
1189
|
|
if (__npy_ind < 0) __npy_ind += _PyAIT(it)->size; \
|
1190
|
|
_PyAIT(it)->index = __npy_ind; \
|
1191
|
|
if (_PyAIT(it)->nd_m1 == 0) { \
|
1192
|
|
_PyAIT(it)->dataptr = PyArray_BYTES(_PyAIT(it)->ao) + \
|
1193
|
|
__npy_ind * _PyAIT(it)->strides[0]; \
|
1194
|
|
} \
|
1195
|
|
else if (_PyAIT(it)->contiguous) \
|
1196
|
|
_PyAIT(it)->dataptr = PyArray_BYTES(_PyAIT(it)->ao) + \
|
1197
|
|
__npy_ind * PyArray_DESCR(_PyAIT(it)->ao)->elsize; \
|
1198
|
|
else { \
|
1199
|
|
_PyAIT(it)->dataptr = PyArray_BYTES(_PyAIT(it)->ao); \
|
1200
|
|
for (__npy_i = 0; __npy_i<=_PyAIT(it)->nd_m1; \
|
1201
|
|
__npy_i++) { \
|
1202
|
|
_PyAIT(it)->dataptr += \
|
1203
|
|
(__npy_ind / _PyAIT(it)->factors[__npy_i]) \
|
1204
|
|
* _PyAIT(it)->strides[__npy_i]; \
|
1205
|
|
__npy_ind %= _PyAIT(it)->factors[__npy_i]; \
|
1206
|
|
} \
|
1207
|
|
} \
|
1208
|
|
} while (0)
|
1209
|
|
|
1210
|
|
#define PyArray_ITER_DATA(it) ((void *)(_PyAIT(it)->dataptr))
|
1211
|
|
|
1212
|
|
#define PyArray_ITER_NOTDONE(it) (_PyAIT(it)->index < _PyAIT(it)->size)
|
1213
|
|
|
1214
|
|
|
1215
|
|
/*
|
1216
|
|
* Any object passed to PyArray_Broadcast must be binary compatible
|
1217
|
|
* with this structure.
|
1218
|
|
*/
|
1219
|
|
|
1220
|
|
typedef struct {
|
1221
|
|
PyObject_HEAD
|
1222
|
|
int numiter; /* number of iters */
|
1223
|
|
npy_intp size; /* broadcasted size */
|
1224
|
|
npy_intp index; /* current index */
|
1225
|
|
int nd; /* number of dims */
|
1226
|
|
npy_intp dimensions[NPY_MAXDIMS]; /* dimensions */
|
1227
|
|
PyArrayIterObject *iters[NPY_MAXARGS]; /* iterators */
|
1228
|
|
} PyArrayMultiIterObject;
|
1229
|
|
|
1230
|
|
#define _PyMIT(m) ((PyArrayMultiIterObject *)(m))
|
1231
|
|
#define PyArray_MultiIter_RESET(multi) do { \
|
1232
|
|
int __npy_mi; \
|
1233
|
|
_PyMIT(multi)->index = 0; \
|
1234
|
|
for (__npy_mi=0; __npy_mi < _PyMIT(multi)->numiter; __npy_mi++) { \
|
1235
|
|
PyArray_ITER_RESET(_PyMIT(multi)->iters[__npy_mi]); \
|
1236
|
|
} \
|
1237
|
|
} while (0)
|
1238
|
|
|
1239
|
|
#define PyArray_MultiIter_NEXT(multi) do { \
|
1240
|
|
int __npy_mi; \
|
1241
|
|
_PyMIT(multi)->index++; \
|
1242
|
|
for (__npy_mi=0; __npy_mi < _PyMIT(multi)->numiter; __npy_mi++) { \
|
1243
|
|
PyArray_ITER_NEXT(_PyMIT(multi)->iters[__npy_mi]); \
|
1244
|
|
} \
|
1245
|
|
} while (0)
|
1246
|
|
|
1247
|
|
#define PyArray_MultiIter_GOTO(multi, dest) do { \
|
1248
|
|
int __npy_mi; \
|
1249
|
|
for (__npy_mi=0; __npy_mi < _PyMIT(multi)->numiter; __npy_mi++) { \
|
1250
|
|
PyArray_ITER_GOTO(_PyMIT(multi)->iters[__npy_mi], dest); \
|
1251
|
|
} \
|
1252
|
|
_PyMIT(multi)->index = _PyMIT(multi)->iters[0]->index; \
|
1253
|
|
} while (0)
|
1254
|
|
|
1255
|
|
#define PyArray_MultiIter_GOTO1D(multi, ind) do { \
|
1256
|
|
int __npy_mi; \
|
1257
|
|
for (__npy_mi=0; __npy_mi < _PyMIT(multi)->numiter; __npy_mi++) { \
|
1258
|
|
PyArray_ITER_GOTO1D(_PyMIT(multi)->iters[__npy_mi], ind); \
|
1259
|
|
} \
|
1260
|
|
_PyMIT(multi)->index = _PyMIT(multi)->iters[0]->index; \
|
1261
|
|
} while (0)
|
1262
|
|
|
1263
|
|
#define PyArray_MultiIter_DATA(multi, i) \
|
1264
|
|
((void *)(_PyMIT(multi)->iters[i]->dataptr))
|
1265
|
|
|
1266
|
|
#define PyArray_MultiIter_NEXTi(multi, i) \
|
1267
|
|
PyArray_ITER_NEXT(_PyMIT(multi)->iters[i])
|
1268
|
|
|
1269
|
|
#define PyArray_MultiIter_NOTDONE(multi) \
|
1270
|
|
(_PyMIT(multi)->index < _PyMIT(multi)->size)
|
1271
|
|
|
1272
|
|
|
1273
|
|
/*
|
1274
|
|
* Store the information needed for fancy-indexing over an array. The
|
1275
|
|
* fields are slightly unordered to keep consec, dataptr and subspace
|
1276
|
|
* where they were originally.
|
1277
|
|
*/
|
1278
|
|
typedef struct {
|
1279
|
|
PyObject_HEAD
|
1280
|
|
/*
|
1281
|
|
* Multi-iterator portion --- needs to be present in this
|
1282
|
|
* order to work with PyArray_Broadcast
|
1283
|
|
*/
|
1284
|
|
|
1285
|
|
int numiter; /* number of index-array
|
1286
|
|
iterators */
|
1287
|
|
npy_intp size; /* size of broadcasted
|
1288
|
|
result */
|
1289
|
|
npy_intp index; /* current index */
|
1290
|
|
int nd; /* number of dims */
|
1291
|
|
npy_intp dimensions[NPY_MAXDIMS]; /* dimensions */
|
1292
|
|
NpyIter *outer; /* index objects
|
1293
|
|
iterator */
|
1294
|
|
void *unused[NPY_MAXDIMS - 2];
|
1295
|
|
PyArrayObject *array;
|
1296
|
|
/* Flat iterator for the indexed array. For compatibility solely. */
|
1297
|
|
PyArrayIterObject *ait;
|
1298
|
|
|
1299
|
|
/*
|
1300
|
|
* Subspace array. For binary compatibility (was an iterator,
|
1301
|
|
* but only the check for NULL should be used).
|
1302
|
|
*/
|
1303
|
|
PyArrayObject *subspace;
|
1304
|
|
|
1305
|
|
/*
|
1306
|
|
* if subspace iteration, then this is the array of axes in
|
1307
|
|
* the underlying array represented by the index objects
|
1308
|
|
*/
|
1309
|
|
int iteraxes[NPY_MAXDIMS];
|
1310
|
|
npy_intp fancy_strides[NPY_MAXDIMS];
|
1311
|
|
|
1312
|
|
/* pointer when all fancy indices are 0 */
|
1313
|
|
char *baseoffset;
|
1314
|
|
|
1315
|
|
/*
|
1316
|
|
* after binding consec denotes at which axis the fancy axes
|
1317
|
|
* are inserted.
|
1318
|
|
*/
|
1319
|
|
int consec;
|
1320
|
|
char *dataptr;
|
1321
|
|
|
1322
|
|
int nd_fancy;
|
1323
|
|
npy_intp fancy_dims[NPY_MAXDIMS];
|
1324
|
|
|
1325
|
|
/* Whether the iterator (any of the iterators) requires API */
|
1326
|
|
int needs_api;
|
1327
|
|
|
1328
|
|
/*
|
1329
|
|
* Extra op information.
|
1330
|
|
*/
|
1331
|
|
PyArrayObject *extra_op;
|
1332
|
|
PyArray_Descr *extra_op_dtype; /* desired dtype */
|
1333
|
|
npy_uint32 *extra_op_flags; /* Iterator flags */
|
1334
|
|
|
1335
|
|
NpyIter *extra_op_iter;
|
1336
|
|
NpyIter_IterNextFunc *extra_op_next;
|
1337
|
|
char **extra_op_ptrs;
|
1338
|
|
|
1339
|
|
/*
|
1340
|
|
* Information about the iteration state.
|
1341
|
|
*/
|
1342
|
|
NpyIter_IterNextFunc *outer_next;
|
1343
|
|
char **outer_ptrs;
|
1344
|
|
npy_intp *outer_strides;
|
1345
|
|
|
1346
|
|
/*
|
1347
|
|
* Information about the subspace iterator.
|
1348
|
|
*/
|
1349
|
|
NpyIter *subspace_iter;
|
1350
|
|
NpyIter_IterNextFunc *subspace_next;
|
1351
|
|
char **subspace_ptrs;
|
1352
|
|
npy_intp *subspace_strides;
|
1353
|
|
|
1354
|
|
/* Count for the external loop (which ever it is) for API iteration */
|
1355
|
|
npy_intp iter_count;
|
1356
|
|
|
1357
|
|
} PyArrayMapIterObject;
|
1358
|
|
|
1359
|
|
enum {
|
1360
|
|
NPY_NEIGHBORHOOD_ITER_ZERO_PADDING,
|
1361
|
|
NPY_NEIGHBORHOOD_ITER_ONE_PADDING,
|
1362
|
|
NPY_NEIGHBORHOOD_ITER_CONSTANT_PADDING,
|
1363
|
|
NPY_NEIGHBORHOOD_ITER_CIRCULAR_PADDING,
|
1364
|
|
NPY_NEIGHBORHOOD_ITER_MIRROR_PADDING
|
1365
|
|
};
|
1366
|
|
|
1367
|
|
typedef struct {
|
1368
|
|
PyObject_HEAD
|
1369
|
|
|
1370
|
|
/*
|
1371
|
|
* PyArrayIterObject part: keep this in this exact order
|
1372
|
|
*/
|
1373
|
|
int nd_m1; /* number of dimensions - 1 */
|
1374
|
|
npy_intp index, size;
|
1375
|
|
npy_intp coordinates[NPY_MAXDIMS];/* N-dimensional loop */
|
1376
|
|
npy_intp dims_m1[NPY_MAXDIMS]; /* ao->dimensions - 1 */
|
1377
|
|
npy_intp strides[NPY_MAXDIMS]; /* ao->strides or fake */
|
1378
|
|
npy_intp backstrides[NPY_MAXDIMS];/* how far to jump back */
|
1379
|
|
npy_intp factors[NPY_MAXDIMS]; /* shape factors */
|
1380
|
|
PyArrayObject *ao;
|
1381
|
|
char *dataptr; /* pointer to current item*/
|
1382
|
|
npy_bool contiguous;
|
1383
|
|
|
1384
|
|
npy_intp bounds[NPY_MAXDIMS][2];
|
1385
|
|
npy_intp limits[NPY_MAXDIMS][2];
|
1386
|
|
npy_intp limits_sizes[NPY_MAXDIMS];
|
1387
|
|
npy_iter_get_dataptr_t translate;
|
1388
|
|
|
1389
|
|
/*
|
1390
|
|
* New members
|
1391
|
|
*/
|
1392
|
|
npy_intp nd;
|
1393
|
|
|
1394
|
|
/* Dimensions is the dimension of the array */
|
1395
|
|
npy_intp dimensions[NPY_MAXDIMS];
|
1396
|
|
|
1397
|
|
/*
|
1398
|
|
* Neighborhood points coordinates are computed relatively to the
|
1399
|
|
* point pointed by _internal_iter
|
1400
|
|
*/
|
1401
|
|
PyArrayIterObject* _internal_iter;
|
1402
|
|
/*
|
1403
|
|
* To keep a reference to the representation of the constant value
|
1404
|
|
* for constant padding
|
1405
|
|
*/
|
1406
|
|
char* constant;
|
1407
|
|
|
1408
|
|
int mode;
|
1409
|
|
} PyArrayNeighborhoodIterObject;
|
1410
|
|
|
1411
|
|
/*
|
1412
|
|
* Neighborhood iterator API
|
1413
|
|
*/
|
1414
|
|
|
1415
|
|
/* General: those work for any mode */
|
1416
|
|
static NPY_INLINE int
|
1417
|
|
PyArrayNeighborhoodIter_Reset(PyArrayNeighborhoodIterObject* iter);
|
1418
|
|
static NPY_INLINE int
|
1419
|
|
PyArrayNeighborhoodIter_Next(PyArrayNeighborhoodIterObject* iter);
|
1420
|
|
#if 0
|
1421
|
|
static NPY_INLINE int
|
1422
|
|
PyArrayNeighborhoodIter_Next2D(PyArrayNeighborhoodIterObject* iter);
|
1423
|
|
#endif
|
1424
|
|
|
1425
|
|
/*
|
1426
|
|
* Include inline implementations - functions defined there are not
|
1427
|
|
* considered public API
|
1428
|
|
*/
|
1429
|
|
#define _NPY_INCLUDE_NEIGHBORHOOD_IMP
|
1430
|
|
#include "_neighborhood_iterator_imp.h"
|
1431
|
|
#undef _NPY_INCLUDE_NEIGHBORHOOD_IMP
|
1432
|
|
|
1433
|
|
/* The default array type */
|
1434
|
|
#define NPY_DEFAULT_TYPE NPY_DOUBLE
|
1435
|
|
|
1436
|
|
/*
|
1437
|
|
* All sorts of useful ways to look into a PyArrayObject. It is recommended
|
1438
|
|
* to use PyArrayObject * objects instead of always casting from PyObject *,
|
1439
|
|
* for improved type checking.
|
1440
|
|
*
|
1441
|
|
* In many cases here the macro versions of the accessors are deprecated,
|
1442
|
|
* but can't be immediately changed to inline functions because the
|
1443
|
|
* preexisting macros accept PyObject * and do automatic casts. Inline
|
1444
|
|
* functions accepting PyArrayObject * provides for some compile-time
|
1445
|
|
* checking of correctness when working with these objects in C.
|
1446
|
|
*/
|
1447
|
|
|
1448
|
|
#define PyArray_ISONESEGMENT(m) (PyArray_CHKFLAGS(m, NPY_ARRAY_C_CONTIGUOUS) || \
|
1449
|
|
PyArray_CHKFLAGS(m, NPY_ARRAY_F_CONTIGUOUS))
|
1450
|
|
|
1451
|
|
#define PyArray_ISFORTRAN(m) (PyArray_CHKFLAGS(m, NPY_ARRAY_F_CONTIGUOUS) && \
|
1452
|
|
(!PyArray_CHKFLAGS(m, NPY_ARRAY_C_CONTIGUOUS)))
|
1453
|
|
|
1454
|
|
#define PyArray_FORTRAN_IF(m) ((PyArray_CHKFLAGS(m, NPY_ARRAY_F_CONTIGUOUS) ? \
|
1455
|
|
NPY_ARRAY_F_CONTIGUOUS : 0))
|
1456
|
|
|
1457
|
|
#if (defined(NPY_NO_DEPRECATED_API) && (NPY_1_7_API_VERSION <= NPY_NO_DEPRECATED_API))
|
1458
|
|
/*
|
1459
|
|
* Changing access macros into functions, to allow for future hiding
|
1460
|
|
* of the internal memory layout. This later hiding will allow the 2.x series
|
1461
|
|
* to change the internal representation of arrays without affecting
|
1462
|
|
* ABI compatibility.
|
1463
|
|
*/
|
1464
|
|
|
1465
|
|
static NPY_INLINE int
|
1466
|
|
PyArray_NDIM(const PyArrayObject *arr)
|
1467
|
|
{
|
1468
|
1
|
return ((PyArrayObject_fields *)arr)->nd;
|
1469
|
|
}
|
1470
|
|
|
1471
|
|
static NPY_INLINE void *
|
1472
|
|
PyArray_DATA(PyArrayObject *arr)
|
1473
|
|
{
|
1474
|
1
|
return ((PyArrayObject_fields *)arr)->data;
|
1475
|
|
}
|
1476
|
|
|
1477
|
|
static NPY_INLINE char *
|
1478
|
|
PyArray_BYTES(PyArrayObject *arr)
|
1479
|
|
{
|
1480
|
1
|
return ((PyArrayObject_fields *)arr)->data;
|
1481
|
|
}
|
1482
|
|
|
1483
|
|
static NPY_INLINE npy_intp *
|
1484
|
|
PyArray_DIMS(PyArrayObject *arr)
|
1485
|
|
{
|
1486
|
1
|
return ((PyArrayObject_fields *)arr)->dimensions;
|
1487
|
|
}
|
1488
|
|
|
1489
|
|
static NPY_INLINE npy_intp *
|
1490
|
|
PyArray_STRIDES(PyArrayObject *arr)
|
1491
|
|
{
|
1492
|
1
|
return ((PyArrayObject_fields *)arr)->strides;
|
1493
|
|
}
|
1494
|
|
|
1495
|
|
static NPY_INLINE npy_intp
|
1496
|
|
PyArray_DIM(const PyArrayObject *arr, int idim)
|
1497
|
|
{
|
1498
|
1
|
return ((PyArrayObject_fields *)arr)->dimensions[idim];
|
1499
|
|
}
|
1500
|
|
|
1501
|
|
static NPY_INLINE npy_intp
|
1502
|
|
PyArray_STRIDE(const PyArrayObject *arr, int istride)
|
1503
|
|
{
|
1504
|
1
|
return ((PyArrayObject_fields *)arr)->strides[istride];
|
1505
|
|
}
|
1506
|
|
|
1507
|
|
static NPY_INLINE NPY_RETURNS_BORROWED_REF PyObject *
|
1508
|
|
PyArray_BASE(PyArrayObject *arr)
|
1509
|
|
{
|
1510
|
1
|
return ((PyArrayObject_fields *)arr)->base;
|
1511
|
|
}
|
1512
|
|
|
1513
|
|
static NPY_INLINE NPY_RETURNS_BORROWED_REF PyArray_Descr *
|
1514
|
|
PyArray_DESCR(PyArrayObject *arr)
|
1515
|
|
{
|
1516
|
1
|
return ((PyArrayObject_fields *)arr)->descr;
|
1517
|
|
}
|
1518
|
|
|
1519
|
|
static NPY_INLINE int
|
1520
|
|
PyArray_FLAGS(const PyArrayObject *arr)
|
1521
|
|
{
|
1522
|
1
|
return ((PyArrayObject_fields *)arr)->flags;
|
1523
|
|
}
|
1524
|
|
|
1525
|
|
static NPY_INLINE npy_intp
|
1526
|
|
PyArray_ITEMSIZE(const PyArrayObject *arr)
|
1527
|
|
{
|
1528
|
1
|
return ((PyArrayObject_fields *)arr)->descr->elsize;
|
1529
|
|
}
|
1530
|
|
|
1531
|
|
static NPY_INLINE int
|
1532
|
|
PyArray_TYPE(const PyArrayObject *arr)
|
1533
|
|
{
|
1534
|
1
|
return ((PyArrayObject_fields *)arr)->descr->type_num;
|
1535
|
|
}
|
1536
|
|
|
1537
|
|
static NPY_INLINE int
|
1538
|
|
PyArray_CHKFLAGS(const PyArrayObject *arr, int flags)
|
1539
|
|
{
|
1540
|
1
|
return (PyArray_FLAGS(arr) & flags) == flags;
|
1541
|
|
}
|
1542
|
|
|
1543
|
|
static NPY_INLINE PyObject *
|
1544
|
|
PyArray_GETITEM(const PyArrayObject *arr, const char *itemptr)
|
1545
|
|
{
|
1546
|
1
|
return ((PyArrayObject_fields *)arr)->descr->f->getitem(
|
1547
|
|
(void *)itemptr, (PyArrayObject *)arr);
|
1548
|
|
}
|
1549
|
|
|
1550
|
|
/*
|
1551
|
|
* SETITEM should only be used if it is known that the value is a scalar
|
1552
|
|
* and of a type understood by the arrays dtype.
|
1553
|
|
* Use `PyArray_Pack` if the value may be of a different dtype.
|
1554
|
|
*/
|
1555
|
|
static NPY_INLINE int
|
1556
|
|
PyArray_SETITEM(PyArrayObject *arr, char *itemptr, PyObject *v)
|
1557
|
|
{
|
1558
|
1
|
return ((PyArrayObject_fields *)arr)->descr->f->setitem(v, itemptr, arr);
|
1559
|
|
}
|
1560
|
|
|
1561
|
|
#else
|
1562
|
|
|
1563
|
|
/* These macros are deprecated as of NumPy 1.7. */
|
1564
|
|
#define PyArray_NDIM(obj) (((PyArrayObject_fields *)(obj))->nd)
|
1565
|
|
#define PyArray_BYTES(obj) (((PyArrayObject_fields *)(obj))->data)
|
1566
|
|
#define PyArray_DATA(obj) ((void *)((PyArrayObject_fields *)(obj))->data)
|
1567
|
|
#define PyArray_DIMS(obj) (((PyArrayObject_fields *)(obj))->dimensions)
|
1568
|
|
#define PyArray_STRIDES(obj) (((PyArrayObject_fields *)(obj))->strides)
|
1569
|
|
#define PyArray_DIM(obj,n) (PyArray_DIMS(obj)[n])
|
1570
|
|
#define PyArray_STRIDE(obj,n) (PyArray_STRIDES(obj)[n])
|
1571
|
|
#define PyArray_BASE(obj) (((PyArrayObject_fields *)(obj))->base)
|
1572
|
|
#define PyArray_DESCR(obj) (((PyArrayObject_fields *)(obj))->descr)
|
1573
|
|
#define PyArray_FLAGS(obj) (((PyArrayObject_fields *)(obj))->flags)
|
1574
|
|
#define PyArray_CHKFLAGS(m, FLAGS) \
|
1575
|
|
((((PyArrayObject_fields *)(m))->flags & (FLAGS)) == (FLAGS))
|
1576
|
|
#define PyArray_ITEMSIZE(obj) \
|
1577
|
|
(((PyArrayObject_fields *)(obj))->descr->elsize)
|
1578
|
|
#define PyArray_TYPE(obj) \
|
1579
|
|
(((PyArrayObject_fields *)(obj))->descr->type_num)
|
1580
|
|
#define PyArray_GETITEM(obj,itemptr) \
|
1581
|
|
PyArray_DESCR(obj)->f->getitem((char *)(itemptr), \
|
1582
|
|
(PyArrayObject *)(obj))
|
1583
|
|
|
1584
|
|
#define PyArray_SETITEM(obj,itemptr,v) \
|
1585
|
|
PyArray_DESCR(obj)->f->setitem((PyObject *)(v), \
|
1586
|
|
(char *)(itemptr), \
|
1587
|
|
(PyArrayObject *)(obj))
|
1588
|
|
#endif
|
1589
|
|
|
1590
|
|
static NPY_INLINE PyArray_Descr *
|
1591
|
|
PyArray_DTYPE(PyArrayObject *arr)
|
1592
|
|
{
|
1593
|
1
|
return ((PyArrayObject_fields *)arr)->descr;
|
1594
|
|
}
|
1595
|
|
|
1596
|
|
static NPY_INLINE npy_intp *
|
1597
|
|
PyArray_SHAPE(PyArrayObject *arr)
|
1598
|
|
{
|
1599
|
1
|
return ((PyArrayObject_fields *)arr)->dimensions;
|
1600
|
|
}
|
1601
|
|
|
1602
|
|
/*
|
1603
|
|
* Enables the specified array flags. Does no checking,
|
1604
|
|
* assumes you know what you're doing.
|
1605
|
|
*/
|
1606
|
|
static NPY_INLINE void
|
1607
|
|
PyArray_ENABLEFLAGS(PyArrayObject *arr, int flags)
|
1608
|
|
{
|
1609
|
1
|
((PyArrayObject_fields *)arr)->flags |= flags;
|
1610
|
|
}
|
1611
|
|
|
1612
|
|
/*
|
1613
|
|
* Clears the specified array flags. Does no checking,
|
1614
|
|
* assumes you know what you're doing.
|
1615
|
|
*/
|
1616
|
|
static NPY_INLINE void
|
1617
|
|
PyArray_CLEARFLAGS(PyArrayObject *arr, int flags)
|
1618
|
|
{
|
1619
|
1
|
((PyArrayObject_fields *)arr)->flags &= ~flags;
|
1620
|
|
}
|
1621
|
|
|
1622
|
|
#define PyTypeNum_ISBOOL(type) ((type) == NPY_BOOL)
|
1623
|
|
|
1624
|
|
#define PyTypeNum_ISUNSIGNED(type) (((type) == NPY_UBYTE) || \
|
1625
|
|
((type) == NPY_USHORT) || \
|
1626
|
|
((type) == NPY_UINT) || \
|
1627
|
|
((type) == NPY_ULONG) || \
|
1628
|
|
((type) == NPY_ULONGLONG))
|
1629
|
|
|
1630
|
|
#define PyTypeNum_ISSIGNED(type) (((type) == NPY_BYTE) || \
|
1631
|
|
((type) == NPY_SHORT) || \
|
1632
|
|
((type) == NPY_INT) || \
|
1633
|
|
((type) == NPY_LONG) || \
|
1634
|
|
((type) == NPY_LONGLONG))
|
1635
|
|
|
1636
|
|
#define PyTypeNum_ISINTEGER(type) (((type) >= NPY_BYTE) && \
|
1637
|
|
((type) <= NPY_ULONGLONG))
|
1638
|
|
|
1639
|
|
#define PyTypeNum_ISFLOAT(type) ((((type) >= NPY_FLOAT) && \
|
1640
|
|
((type) <= NPY_LONGDOUBLE)) || \
|
1641
|
|
((type) == NPY_HALF))
|
1642
|
|
|
1643
|
|
#define PyTypeNum_ISNUMBER(type) (((type) <= NPY_CLONGDOUBLE) || \
|
1644
|
|
((type) == NPY_HALF))
|
1645
|
|
|
1646
|
|
#define PyTypeNum_ISSTRING(type) (((type) == NPY_STRING) || \
|
1647
|
|
((type) == NPY_UNICODE))
|
1648
|
|
|
1649
|
|
#define PyTypeNum_ISCOMPLEX(type) (((type) >= NPY_CFLOAT) && \
|
1650
|
|
((type) <= NPY_CLONGDOUBLE))
|
1651
|
|
|
1652
|
|
#define PyTypeNum_ISPYTHON(type) (((type) == NPY_LONG) || \
|
1653
|
|
((type) == NPY_DOUBLE) || \
|
1654
|
|
((type) == NPY_CDOUBLE) || \
|
1655
|
|
((type) == NPY_BOOL) || \
|
1656
|
|
((type) == NPY_OBJECT ))
|
1657
|
|
|
1658
|
|
#define PyTypeNum_ISFLEXIBLE(type) (((type) >=NPY_STRING) && \
|
1659
|
|
((type) <=NPY_VOID))
|
1660
|
|
|
1661
|
|
#define PyTypeNum_ISDATETIME(type) (((type) >=NPY_DATETIME) && \
|
1662
|
|
((type) <=NPY_TIMEDELTA))
|
1663
|
|
|
1664
|
|
#define PyTypeNum_ISUSERDEF(type) (((type) >= NPY_USERDEF) && \
|
1665
|
|
((type) < NPY_USERDEF+ \
|
1666
|
|
NPY_NUMUSERTYPES))
|
1667
|
|
|
1668
|
|
#define PyTypeNum_ISEXTENDED(type) (PyTypeNum_ISFLEXIBLE(type) || \
|
1669
|
|
PyTypeNum_ISUSERDEF(type))
|
1670
|
|
|
1671
|
|
#define PyTypeNum_ISOBJECT(type) ((type) == NPY_OBJECT)
|
1672
|
|
|
1673
|
|
|
1674
|
|
#define PyDataType_ISBOOL(obj) PyTypeNum_ISBOOL(((PyArray_Descr*)(obj))->type_num)
|
1675
|
|
#define PyDataType_ISUNSIGNED(obj) PyTypeNum_ISUNSIGNED(((PyArray_Descr*)(obj))->type_num)
|
1676
|
|
#define PyDataType_ISSIGNED(obj) PyTypeNum_ISSIGNED(((PyArray_Descr*)(obj))->type_num)
|
1677
|
|
#define PyDataType_ISINTEGER(obj) PyTypeNum_ISINTEGER(((PyArray_Descr*)(obj))->type_num )
|
1678
|
|
#define PyDataType_ISFLOAT(obj) PyTypeNum_ISFLOAT(((PyArray_Descr*)(obj))->type_num)
|
1679
|
|
#define PyDataType_ISNUMBER(obj) PyTypeNum_ISNUMBER(((PyArray_Descr*)(obj))->type_num)
|
1680
|
|
#define PyDataType_ISSTRING(obj) PyTypeNum_ISSTRING(((PyArray_Descr*)(obj))->type_num)
|
1681
|
|
#define PyDataType_ISCOMPLEX(obj) PyTypeNum_ISCOMPLEX(((PyArray_Descr*)(obj))->type_num)
|
1682
|
|
#define PyDataType_ISPYTHON(obj) PyTypeNum_ISPYTHON(((PyArray_Descr*)(obj))->type_num)
|
1683
|
|
#define PyDataType_ISFLEXIBLE(obj) PyTypeNum_ISFLEXIBLE(((PyArray_Descr*)(obj))->type_num)
|
1684
|
|
#define PyDataType_ISDATETIME(obj) PyTypeNum_ISDATETIME(((PyArray_Descr*)(obj))->type_num)
|
1685
|
|
#define PyDataType_ISUSERDEF(obj) PyTypeNum_ISUSERDEF(((PyArray_Descr*)(obj))->type_num)
|
1686
|
|
#define PyDataType_ISEXTENDED(obj) PyTypeNum_ISEXTENDED(((PyArray_Descr*)(obj))->type_num)
|
1687
|
|
#define PyDataType_ISOBJECT(obj) PyTypeNum_ISOBJECT(((PyArray_Descr*)(obj))->type_num)
|
1688
|
|
#define PyDataType_HASFIELDS(obj) (((PyArray_Descr *)(obj))->names != NULL)
|
1689
|
|
#define PyDataType_HASSUBARRAY(dtype) ((dtype)->subarray != NULL)
|
1690
|
|
#define PyDataType_ISUNSIZED(dtype) ((dtype)->elsize == 0 && \
|
1691
|
|
!PyDataType_HASFIELDS(dtype))
|
1692
|
|
#define PyDataType_MAKEUNSIZED(dtype) ((dtype)->elsize = 0)
|
1693
|
|
|
1694
|
|
#define PyArray_ISBOOL(obj) PyTypeNum_ISBOOL(PyArray_TYPE(obj))
|
1695
|
|
#define PyArray_ISUNSIGNED(obj) PyTypeNum_ISUNSIGNED(PyArray_TYPE(obj))
|
1696
|
|
#define PyArray_ISSIGNED(obj) PyTypeNum_ISSIGNED(PyArray_TYPE(obj))
|
1697
|
|
#define PyArray_ISINTEGER(obj) PyTypeNum_ISINTEGER(PyArray_TYPE(obj))
|
1698
|
|
#define PyArray_ISFLOAT(obj) PyTypeNum_ISFLOAT(PyArray_TYPE(obj))
|
1699
|
|
#define PyArray_ISNUMBER(obj) PyTypeNum_ISNUMBER(PyArray_TYPE(obj))
|
1700
|
|
#define PyArray_ISSTRING(obj) PyTypeNum_ISSTRING(PyArray_TYPE(obj))
|
1701
|
|
#define PyArray_ISCOMPLEX(obj) PyTypeNum_ISCOMPLEX(PyArray_TYPE(obj))
|
1702
|
|
#define PyArray_ISPYTHON(obj) PyTypeNum_ISPYTHON(PyArray_TYPE(obj))
|
1703
|
|
#define PyArray_ISFLEXIBLE(obj) PyTypeNum_ISFLEXIBLE(PyArray_TYPE(obj))
|
1704
|
|
#define PyArray_ISDATETIME(obj) PyTypeNum_ISDATETIME(PyArray_TYPE(obj))
|
1705
|
|
#define PyArray_ISUSERDEF(obj) PyTypeNum_ISUSERDEF(PyArray_TYPE(obj))
|
1706
|
|
#define PyArray_ISEXTENDED(obj) PyTypeNum_ISEXTENDED(PyArray_TYPE(obj))
|
1707
|
|
#define PyArray_ISOBJECT(obj) PyTypeNum_ISOBJECT(PyArray_TYPE(obj))
|
1708
|
|
#define PyArray_HASFIELDS(obj) PyDataType_HASFIELDS(PyArray_DESCR(obj))
|
1709
|
|
|
1710
|
|
/*
|
1711
|
|
* FIXME: This should check for a flag on the data-type that
|
1712
|
|
* states whether or not it is variable length. Because the
|
1713
|
|
* ISFLEXIBLE check is hard-coded to the built-in data-types.
|
1714
|
|
*/
|
1715
|
|
#define PyArray_ISVARIABLE(obj) PyTypeNum_ISFLEXIBLE(PyArray_TYPE(obj))
|
1716
|
|
|
1717
|
|
#define PyArray_SAFEALIGNEDCOPY(obj) (PyArray_ISALIGNED(obj) && !PyArray_ISVARIABLE(obj))
|
1718
|
|
|
1719
|
|
|
1720
|
|
#define NPY_LITTLE '<'
|
1721
|
|
#define NPY_BIG '>'
|
1722
|
|
#define NPY_NATIVE '='
|
1723
|
|
#define NPY_SWAP 's'
|
1724
|
|
#define NPY_IGNORE '|'
|
1725
|
|
|
1726
|
|
#if NPY_BYTE_ORDER == NPY_BIG_ENDIAN
|
1727
|
|
#define NPY_NATBYTE NPY_BIG
|
1728
|
|
#define NPY_OPPBYTE NPY_LITTLE
|
1729
|
|
#else
|
1730
|
|
#define NPY_NATBYTE NPY_LITTLE
|
1731
|
|
#define NPY_OPPBYTE NPY_BIG
|
1732
|
|
#endif
|
1733
|
|
|
1734
|
|
#define PyArray_ISNBO(arg) ((arg) != NPY_OPPBYTE)
|
1735
|
|
#define PyArray_IsNativeByteOrder PyArray_ISNBO
|
1736
|
|
#define PyArray_ISNOTSWAPPED(m) PyArray_ISNBO(PyArray_DESCR(m)->byteorder)
|
1737
|
|
#define PyArray_ISBYTESWAPPED(m) (!PyArray_ISNOTSWAPPED(m))
|
1738
|
|
|
1739
|
|
#define PyArray_FLAGSWAP(m, flags) (PyArray_CHKFLAGS(m, flags) && \
|
1740
|
|
PyArray_ISNOTSWAPPED(m))
|
1741
|
|
|
1742
|
|
#define PyArray_ISCARRAY(m) PyArray_FLAGSWAP(m, NPY_ARRAY_CARRAY)
|
1743
|
|
#define PyArray_ISCARRAY_RO(m) PyArray_FLAGSWAP(m, NPY_ARRAY_CARRAY_RO)
|
1744
|
|
#define PyArray_ISFARRAY(m) PyArray_FLAGSWAP(m, NPY_ARRAY_FARRAY)
|
1745
|
|
#define PyArray_ISFARRAY_RO(m) PyArray_FLAGSWAP(m, NPY_ARRAY_FARRAY_RO)
|
1746
|
|
#define PyArray_ISBEHAVED(m) PyArray_FLAGSWAP(m, NPY_ARRAY_BEHAVED)
|
1747
|
|
#define PyArray_ISBEHAVED_RO(m) PyArray_FLAGSWAP(m, NPY_ARRAY_ALIGNED)
|
1748
|
|
|
1749
|
|
|
1750
|
|
#define PyDataType_ISNOTSWAPPED(d) PyArray_ISNBO(((PyArray_Descr *)(d))->byteorder)
|
1751
|
|
#define PyDataType_ISBYTESWAPPED(d) (!PyDataType_ISNOTSWAPPED(d))
|
1752
|
|
|
1753
|
|
/************************************************************
|
1754
|
|
* A struct used by PyArray_CreateSortedStridePerm, new in 1.7.
|
1755
|
|
************************************************************/
|
1756
|
|
|
1757
|
|
typedef struct {
|
1758
|
|
npy_intp perm, stride;
|
1759
|
|
} npy_stride_sort_item;
|
1760
|
|
|
1761
|
|
/************************************************************
|
1762
|
|
* This is the form of the struct that's stored in the
|
1763
|
|
* PyCapsule returned by an array's __array_struct__ attribute. See
|
1764
|
|
* https://docs.scipy.org/doc/numpy/reference/arrays.interface.html for the full
|
1765
|
|
* documentation.
|
1766
|
|
************************************************************/
|
1767
|
|
typedef struct {
|
1768
|
|
int two; /*
|
1769
|
|
* contains the integer 2 as a sanity
|
1770
|
|
* check
|
1771
|
|
*/
|
1772
|
|
|
1773
|
|
int nd; /* number of dimensions */
|
1774
|
|
|
1775
|
|
char typekind; /*
|
1776
|
|
* kind in array --- character code of
|
1777
|
|
* typestr
|
1778
|
|
*/
|
1779
|
|
|
1780
|
|
int itemsize; /* size of each element */
|
1781
|
|
|
1782
|
|
int flags; /*
|
1783
|
|
* how should be data interpreted. Valid
|
1784
|
|
* flags are CONTIGUOUS (1), F_CONTIGUOUS (2),
|
1785
|
|
* ALIGNED (0x100), NOTSWAPPED (0x200), and
|
1786
|
|
* WRITEABLE (0x400). ARR_HAS_DESCR (0x800)
|
1787
|
|
* states that arrdescr field is present in
|
1788
|
|
* structure
|
1789
|
|
*/
|
1790
|
|
|
1791
|
|
npy_intp *shape; /*
|
1792
|
|
* A length-nd array of shape
|
1793
|
|
* information
|
1794
|
|
*/
|
1795
|
|
|
1796
|
|
npy_intp *strides; /* A length-nd array of stride information */
|
1797
|
|
|
1798
|
|
void *data; /* A pointer to the first element of the array */
|
1799
|
|
|
1800
|
|
PyObject *descr; /*
|
1801
|
|
* A list of fields or NULL (ignored if flags
|
1802
|
|
* does not have ARR_HAS_DESCR flag set)
|
1803
|
|
*/
|
1804
|
|
} PyArrayInterface;
|
1805
|
|
|
1806
|
|
/*
|
1807
|
|
* This is a function for hooking into the PyDataMem_NEW/FREE/RENEW functions.
|
1808
|
|
* See the documentation for PyDataMem_SetEventHook.
|
1809
|
|
*/
|
1810
|
|
typedef void (PyDataMem_EventHookFunc)(void *inp, void *outp, size_t size,
|
1811
|
|
void *user_data);
|
1812
|
|
|
1813
|
|
|
1814
|
|
/*
|
1815
|
|
* PyArray_DTypeMeta related definitions.
|
1816
|
|
*
|
1817
|
|
* As of now, this API is preliminary and will be extended as necessary.
|
1818
|
|
*/
|
1819
|
|
#if defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD
|
1820
|
|
/*
|
1821
|
|
* The Structures defined in this block are considered private API and
|
1822
|
|
* may change without warning!
|
1823
|
|
*/
|
1824
|
|
/* TODO: Make this definition public in the API, as soon as its settled */
|
1825
|
|
NPY_NO_EXPORT extern PyTypeObject PyArrayDTypeMeta_Type;
|
1826
|
|
|
1827
|
|
typedef struct PyArray_DTypeMeta_tag PyArray_DTypeMeta;
|
1828
|
|
|
1829
|
|
typedef PyArray_Descr *(discover_descr_from_pyobject_function)(
|
1830
|
|
PyArray_DTypeMeta *cls, PyObject *obj);
|
1831
|
|
|
1832
|
|
/*
|
1833
|
|
* Before making this public, we should decide whether it should pass
|
1834
|
|
* the type, or allow looking at the object. A possible use-case:
|
1835
|
|
* `np.array(np.array([0]), dtype=np.ndarray)`
|
1836
|
|
* Could consider arrays that are not `dtype=ndarray` "scalars".
|
1837
|
|
*/
|
1838
|
|
typedef int (is_known_scalar_type_function)(
|
1839
|
|
PyArray_DTypeMeta *cls, PyTypeObject *obj);
|
1840
|
|
|
1841
|
|
typedef PyArray_Descr *(default_descr_function)(PyArray_DTypeMeta *cls);
|
1842
|
|
|
1843
|
|
/*
|
1844
|
|
* While NumPy DTypes would not need to be heap types the plan is to
|
1845
|
|
* make DTypes available in Python at which point they will be heap types.
|
1846
|
|
* Since we also wish to add fields to the DType class, this looks like
|
1847
|
|
* a typical instance definition, but with PyHeapTypeObject instead of
|
1848
|
|
* only the PyObject_HEAD.
|
1849
|
|
* This must only be exposed very extremely careful consideration, since
|
1850
|
|
* it is a fairly complex construct which may be better to allow
|
1851
|
|
* refactoring of.
|
1852
|
|
*/
|
1853
|
|
struct PyArray_DTypeMeta_tag {
|
1854
|
|
PyHeapTypeObject super;
|
1855
|
|
|
1856
|
|
/*
|
1857
|
|
* Most DTypes will have a singleton default instance, for the
|
1858
|
|
* parametric legacy DTypes (bytes, string, void, datetime) this
|
1859
|
|
* may be a pointer to the *prototype* instance?
|
1860
|
|
*/
|
1861
|
|
PyArray_Descr *singleton;
|
1862
|
|
/*
|
1863
|
|
* Is this DType created using the old API? This exists mainly to
|
1864
|
|
* allow for assertions in paths specific to wrapping legacy types.
|
1865
|
|
*/
|
1866
|
|
npy_bool legacy;
|
1867
|
|
/* The values stored by a parametric datatype depend on its instance */
|
1868
|
|
npy_bool parametric;
|
1869
|
|
/* whether the DType can be instantiated (i.e. np.dtype cannot) */
|
1870
|
|
npy_bool abstract;
|
1871
|
|
|
1872
|
|
/*
|
1873
|
|
* The following fields replicate the most important dtype information.
|
1874
|
|
* In the legacy implementation most of these are stored in the
|
1875
|
|
* PyArray_Descr struct.
|
1876
|
|
*/
|
1877
|
|
/* The type object of the scalar instances (may be NULL?) */
|
1878
|
|
PyTypeObject *scalar_type;
|
1879
|
|
/* kind for this type */
|
1880
|
|
char kind;
|
1881
|
|
/* unique-character representing this type */
|
1882
|
|
char type;
|
1883
|
|
/* flags describing data type */
|
1884
|
|
char flags;
|
1885
|
|
/* number representing this type */
|
1886
|
|
int type_num;
|
1887
|
|
/*
|
1888
|
|
* Point to the original ArrFuncs.
|
1889
|
|
* NOTE: We could make a copy to detect changes to `f`.
|
1890
|
|
*/
|
1891
|
|
PyArray_ArrFuncs *f;
|
1892
|
|
|
1893
|
|
/* DType methods, these could be moved into its own struct */
|
1894
|
|
discover_descr_from_pyobject_function *discover_descr_from_pyobject;
|
1895
|
|
is_known_scalar_type_function *is_known_scalar_type;
|
1896
|
|
default_descr_function *default_descr;
|
1897
|
|
};
|
1898
|
|
|
1899
|
|
#endif /* NPY_INTERNAL_BUILD */
|
1900
|
|
|
1901
|
|
|
1902
|
|
/*
|
1903
|
|
* Use the keyword NPY_DEPRECATED_INCLUDES to ensure that the header files
|
1904
|
|
* npy_*_*_deprecated_api.h are only included from here and nowhere else.
|
1905
|
|
*/
|
1906
|
|
#ifdef NPY_DEPRECATED_INCLUDES
|
1907
|
|
#error "Do not use the reserved keyword NPY_DEPRECATED_INCLUDES."
|
1908
|
|
#endif
|
1909
|
|
#define NPY_DEPRECATED_INCLUDES
|
1910
|
|
#if !defined(NPY_NO_DEPRECATED_API) || \
|
1911
|
|
(NPY_NO_DEPRECATED_API < NPY_1_7_API_VERSION)
|
1912
|
|
#include "npy_1_7_deprecated_api.h"
|
1913
|
|
#endif
|
1914
|
|
/*
|
1915
|
|
* There is no file npy_1_8_deprecated_api.h since there are no additional
|
1916
|
|
* deprecated API features in NumPy 1.8.
|
1917
|
|
*
|
1918
|
|
* Note to maintainers: insert code like the following in future NumPy
|
1919
|
|
* versions.
|
1920
|
|
*
|
1921
|
|
* #if !defined(NPY_NO_DEPRECATED_API) || \
|
1922
|
|
* (NPY_NO_DEPRECATED_API < NPY_1_9_API_VERSION)
|
1923
|
|
* #include "npy_1_9_deprecated_api.h"
|
1924
|
|
* #endif
|
1925
|
|
*/
|
1926
|
|
#undef NPY_DEPRECATED_INCLUDES
|
1927
|
|
|
1928
|
|
#endif /* NPY_ARRAYTYPES_H */
|