No flags found
Use flags to group coverage reports by test type, project and/or folders.
Then setup custom commit statuses and notifications for each flag.
e.g., #unittest #integration
#production #enterprise
#frontend #backend
86b42ce
... +0 ...
db2f2ef
Use flags to group coverage reports by test type, project and/or folders.
Then setup custom commit statuses and notifications for each flag.
e.g., #unittest #integration
#production #enterprise
#frontend #backend
13 | 13 | #' no external instruments are available or to supplement external instruments to improve the efficiency of the |
|
14 | 14 | #' IV estimator. |
|
15 | 15 | #' Consider the model in the equation: |
|
16 | + | #' |
|
16 | 17 | #' \ifelse{html}{\out{<br><div style="text-align:center">y<sub>t</sub>=β<sub>0</sub>+β<sub>1</sub>P<sub>t</sub>+β<sub>2</sub>X<sub>t</sub>+ε<sub>t</sub></div>}}{\deqn{ y_{t}=\beta_{0}+ \beta_{1} P_{t} + \beta_{2} X_{t} + \epsilon_{t}}} |
|
17 | 18 | #' |
|
18 | 19 | #' where \eqn{t=1,..,T} indexes either time or cross-sectional units.The endogeneity problem arises from the correlation of |
16 | 16 | #' @details |
|
17 | 17 | #' |
|
18 | 18 | #' Let's consider the model: |
|
19 | + | #' |
|
19 | 20 | #' \ifelse{html}{\out{<br><div style="text-align:center">Y<sub>t</sub>=β<sub>0</sub>+αP<sub>t</sub>+ε<sub>t</sub></div>}}{ \deqn{Y_{t} = \beta_{0} + \alpha P_{t} + \epsilon_{t}}} |
|
20 | 21 | #' \ifelse{html}{\out{<div style="text-align:center">P<sub>t</sub>=π'Z<sub>t</sub>+ν<sub>t</sub></div>}}{ \deqn{P_{t}=\pi^{'}Z_{t} + \nu_{t}}} |
|
21 | 22 | #' |
33 | 34 | #' \code{latentIV} considers \ifelse{html}{\out{Z<sub>t</sub>'}}{\eqn{Z_{t}^{'}}} to be a latent, discrete, exogenous variable with an unknown number of groups \eqn{m} and \eqn{\pi} is a vector of group means. |
|
34 | 35 | #' It is assumed that \eqn{Z} is independent of the error terms \eqn{\epsilon} and \eqn{\nu} and that it has at least two groups with different means. |
|
35 | 36 | #' The structural and random errors are considered normally distributed with mean zero and variance-covariance matrix \eqn{\Sigma}: |
|
37 | + | #' |
|
36 | 38 | #' \ifelse{html}{\out{<div style="text-align:center">Σ=(σ<sub>ε</sub><sup>2</sup>, σ<sub>0</sub><sup>2</sup>, |
|
37 | 39 | #' <br> σ<sub>0</sub><sup>2</sup>, σ<sub>ν</sub><sup>2</sup>)</div>}}{ |
|
38 | 40 | #' \deqn{\Sigma = \left( |
13 | 13 | #' \subsection{Method}{ |
|
14 | 14 | #' |
|
15 | 15 | #' Consider the model: |
|
16 | + | #' |
|
16 | 17 | #' \ifelse{html}{\out{<br><div style="text-align:center">Y<sub>t</sub>=β<sub>0</sub> + β<sub>1</sub>X<sub>t</sub>+αP<sub>t</sub>+ε<sub>t</sub></div>}}{\deqn{ Y_{t} = \beta_{0}+ \beta_{1}X_{t} + \alpha P_{t}+\epsilon_{t} \hspace{0.3cm} (1) }} |
|
17 | 18 | #' |
|
18 | 19 | #' \ifelse{html}{\out{<div style="text-align:center">P<sub>t</sub>=Z<sub>t</sub>+ν<sub>t</sub></div>}}{\deqn{ P_{t} = \gamma Z_{t}+\nu_{t} \hspace{2.5 cm} (2)}} |
26 | 26 | #' |
|
27 | 27 | #' |
|
28 | 28 | #' Consider the model: |
|
29 | + | #' |
|
29 | 30 | #' \ifelse{html}{\out{<br><div style="text-align:center">Y<sub>t</sub>=β<sub>0</sub>+β<sub>1</sub>P<sub>t</sub>+β<sub>2</sub>X<sub>t</sub>+ε<sub>t</sub></div>}}{\deqn{Y_{t}=\beta_{0}+ \beta_{1} P_{t} + \beta_{2} X_{t} + \epsilon_{t}}} |
|
30 | 31 | #' |
|
31 | 32 | #' where \eqn{t=1,..,T} indexes either time or cross-sectional units, \ifelse{html}{\out{Y<sub>t</sub>}}{\eqn{Y_{t}}} is a \eqn{1x1} response variable, |
37 | 38 | #' |
|
38 | 39 | #' The marginal distribution of the endogenous regressor \ifelse{html}{\out{P<sub>t</sub>}}{\eqn{P_{t}}} is obtained using the Epanechnikov |
|
39 | 40 | #' kernel density estimator (Epanechnikov, 1969), as below: |
|
41 | + | #' |
|
40 | 42 | #' \ifelse{html}{\out{<br><div style="text-align:center">ĥ(p)=1/(T·b) ∑(K·((p-P<sub>t</sub>)/b))</div>}}{\deqn{\hat{h}(p)=\frac{1}{T\cdot b}\sum_{t=1}^{T}K\left(\frac{p-P_{t}}{b}\right)}} |
|
41 | 43 | #' |
|
42 | 44 | #' where \ifelse{html}{\out{P<sub>t</sub>}}{\eqn{P_{t}}} is the endogenous regressor, |
Files | Coverage |
---|---|
R | 97.43% |
src/f_copulacorrection_LL_rcpp.cpp | 95.65% |
Project Totals (37 files) | 97.40% |
db2f2ef
86b42ce