mmeierer / REndo

Compare 86b42ce ... +0 ... db2f2ef


@@ -13,6 +13,7 @@
Loading
13 13
#' no external instruments are available or to supplement external instruments to improve the efficiency of the
14 14
#' IV estimator.
15 15
#' Consider the model in the equation:
16 +
#'
16 17
#' \ifelse{html}{\out{<br><div style="text-align:center">y<sub>t</sub>=&beta;<sub>0</sub>+&beta;<sub>1</sub>P<sub>t</sub>+&beta;<sub>2</sub>X<sub>t</sub>+&epsilon;<sub>t</sub></div>}}{\deqn{ y_{t}=\beta_{0}+ \beta_{1} P_{t} + \beta_{2} X_{t} + \epsilon_{t}}}
17 18
#'
18 19
#' where \eqn{t=1,..,T} indexes either time or cross-sectional units.The endogeneity problem arises from the correlation of

@@ -16,6 +16,7 @@
Loading
16 16
#' @details
17 17
#'
18 18
#' Let's consider the model:
19 +
#'
19 20
#' \ifelse{html}{\out{<br><div style="text-align:center">Y<sub>t</sub>=&beta;<sub>0</sub>+&alpha;P<sub>t</sub>+&epsilon;<sub>t</sub></div>}}{ \deqn{Y_{t} = \beta_{0} + \alpha P_{t} + \epsilon_{t}}}
20 21
#' \ifelse{html}{\out{<div style="text-align:center">P<sub>t</sub>=&pi;'Z<sub>t</sub>+&nu;<sub>t</sub></div>}}{ \deqn{P_{t}=\pi^{'}Z_{t} + \nu_{t}}}
21 22
#'
@@ -33,6 +34,7 @@
Loading
33 34
#' \code{latentIV} considers \ifelse{html}{\out{Z<sub>t</sub>'}}{\eqn{Z_{t}^{'}}} to be a latent, discrete, exogenous variable with an unknown number of groups \eqn{m} and \eqn{\pi} is a vector of group means.
34 35
#' It is assumed that \eqn{Z} is independent of the error terms \eqn{\epsilon} and \eqn{\nu} and that it has at least two groups with different means.
35 36
#' The structural and random errors are considered normally distributed with mean zero and variance-covariance matrix \eqn{\Sigma}:
37 +
#'
36 38
#' \ifelse{html}{\out{<div style="text-align:center">&Sigma;=(&sigma;<sub>&epsilon;</sub><sup>2</sup>, &sigma;<sub>0</sub><sup>2</sup>,
37 39
#' <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&sigma;<sub>0</sub><sup>2</sup>, &sigma;<sub>&nu;</sub><sup>2</sup>)</div>}}{
38 40
#' \deqn{\Sigma = \left(

@@ -13,6 +13,7 @@
Loading
13 13
#' \subsection{Method}{
14 14
#'
15 15
#' Consider the model:
16 +
#'
16 17
#' \ifelse{html}{\out{<br><div style="text-align:center">Y<sub>t</sub>=&beta;<sub>0</sub> + &beta;<sub>1</sub>X<sub>t</sub>+&alpha;P<sub>t</sub>+&epsilon;<sub>t</sub></div>}}{\deqn{ Y_{t} = \beta_{0}+ \beta_{1}X_{t} + \alpha P_{t}+\epsilon_{t} \hspace{0.3cm} (1) }}
17 18
#'
18 19
#' \ifelse{html}{\out{<div style="text-align:center">P<sub>t</sub>=Z<sub>t</sub>+&nu;<sub>t</sub></div>}}{\deqn{ P_{t} = \gamma Z_{t}+\nu_{t} \hspace{2.5 cm} (2)}}

@@ -26,6 +26,7 @@
Loading
26 26
#'
27 27
#'
28 28
#' Consider the model:
29 +
#'
29 30
#' \ifelse{html}{\out{<br><div style="text-align:center">Y<sub>t</sub>=&beta;<sub>0</sub>+&beta;<sub>1</sub>P<sub>t</sub>+&beta;<sub>2</sub>X<sub>t</sub>+&epsilon;<sub>t</sub></div>}}{\deqn{Y_{t}=\beta_{0}+ \beta_{1} P_{t} + \beta_{2} X_{t} + \epsilon_{t}}}
30 31
#'
31 32
#' where \eqn{t=1,..,T} indexes either time or cross-sectional units, \ifelse{html}{\out{Y<sub>t</sub>}}{\eqn{Y_{t}}} is a \eqn{1x1} response variable,
@@ -37,6 +38,7 @@
Loading
37 38
#'
38 39
#' The marginal distribution of the endogenous regressor \ifelse{html}{\out{P<sub>t</sub>}}{\eqn{P_{t}}} is obtained using the Epanechnikov
39 40
#' kernel density estimator (Epanechnikov, 1969), as below:
41 +
#'
40 42
#' \ifelse{html}{\out{<br><div style="text-align:center">h&#770;(p)=1/(T&#183;b) &sum;(K&#183;((p-P<sub>t</sub>)/b))</div>}}{\deqn{\hat{h}(p)=\frac{1}{T\cdot b}\sum_{t=1}^{T}K\left(\frac{p-P_{t}}{b}\right)}}
41 43
#'
42 44
#' where \ifelse{html}{\out{P<sub>t</sub>}}{\eqn{P_{t}}} is the endogenous regressor,

Everything is accounted for!

No changes detected that need to be reviewed.
What changes does Codecov check for?
Lines, not adjusted in diff, that have changed coverage data.
Files that introduced coverage data that had none before.
Files that have missing coverage data that once were tracked.
Files Coverage
R 97.43%
src/f_copulacorrection_LL_rcpp.cpp 95.65%
Project Totals (37 files) 97.40%
Loading