mmeierer / REndo

@@ -13,6 +13,7 @@
Loading
13 13
#' no external instruments are available or to supplement external instruments to improve the efficiency of the
14 14
#' IV estimator.
15 15
#' Consider the model in the equation:
16 +
#'
16 17
#' \ifelse{html}{\out{<br><div style="text-align:center">y<sub>t</sub>=&beta;<sub>0</sub>+&beta;<sub>1</sub>P<sub>t</sub>+&beta;<sub>2</sub>X<sub>t</sub>+&epsilon;<sub>t</sub></div>}}{\deqn{ y_{t}=\beta_{0}+ \beta_{1} P_{t} + \beta_{2} X_{t} + \epsilon_{t}}}
17 18
#'
18 19
#' where \eqn{t=1,..,T} indexes either time or cross-sectional units.The endogeneity problem arises from the correlation of

@@ -13,6 +13,7 @@
Loading
13 13
#' \subsection{Method}{
14 14
#'
15 15
#' Consider the model:
16 +
#'
16 17
#' \ifelse{html}{\out{<br><div style="text-align:center">Y<sub>t</sub>=&beta;<sub>0</sub> + &beta;<sub>1</sub>X<sub>t</sub>+&alpha;P<sub>t</sub>+&epsilon;<sub>t</sub></div>}}{\deqn{ Y_{t} = \beta_{0}+ \beta_{1}X_{t} + \alpha P_{t}+\epsilon_{t} \hspace{0.3cm} (1) }}
17 18
#'
18 19
#' \ifelse{html}{\out{<div style="text-align:center">P<sub>t</sub>=Z<sub>t</sub>+&nu;<sub>t</sub></div>}}{\deqn{ P_{t} = \gamma Z_{t}+\nu_{t} \hspace{2.5 cm} (2)}}

@@ -26,6 +26,7 @@
Loading
26 26
#'
27 27
#'
28 28
#' Consider the model:
29 +
#'
29 30
#' \ifelse{html}{\out{<br><div style="text-align:center">Y<sub>t</sub>=&beta;<sub>0</sub>+&beta;<sub>1</sub>P<sub>t</sub>+&beta;<sub>2</sub>X<sub>t</sub>+&epsilon;<sub>t</sub></div>}}{\deqn{Y_{t}=\beta_{0}+ \beta_{1} P_{t} + \beta_{2} X_{t} + \epsilon_{t}}}
30 31
#'
31 32
#' where \eqn{t=1,..,T} indexes either time or cross-sectional units, \ifelse{html}{\out{Y<sub>t</sub>}}{\eqn{Y_{t}}} is a \eqn{1x1} response variable,
@@ -37,6 +38,7 @@
Loading
37 38
#'
38 39
#' The marginal distribution of the endogenous regressor \ifelse{html}{\out{P<sub>t</sub>}}{\eqn{P_{t}}} is obtained using the Epanechnikov
39 40
#' kernel density estimator (Epanechnikov, 1969), as below:
41 +
#'
40 42
#' \ifelse{html}{\out{<br><div style="text-align:center">h&#770;(p)=1/(T&#183;b) &sum;(K&#183;((p-P<sub>t</sub>)/b))</div>}}{\deqn{\hat{h}(p)=\frac{1}{T\cdot b}\sum_{t=1}^{T}K\left(\frac{p-P_{t}}{b}\right)}}
41 43
#'
42 44
#' where \ifelse{html}{\out{P<sub>t</sub>}}{\eqn{P_{t}}} is the endogenous regressor,

@@ -16,6 +16,7 @@
Loading
16 16
#' @details
17 17
#'
18 18
#' Let's consider the model:
19 +
#'
19 20
#' \ifelse{html}{\out{<br><div style="text-align:center">Y<sub>t</sub>=&beta;<sub>0</sub>+&alpha;P<sub>t</sub>+&epsilon;<sub>t</sub></div>}}{ \deqn{Y_{t} = \beta_{0} + \alpha P_{t} + \epsilon_{t}}}
20 21
#' \ifelse{html}{\out{<div style="text-align:center">P<sub>t</sub>=&pi;'Z<sub>t</sub>+&nu;<sub>t</sub></div>}}{ \deqn{P_{t}=\pi^{'}Z_{t} + \nu_{t}}}
21 22
#'
@@ -33,6 +34,7 @@
Loading
33 34
#' \code{latentIV} considers \ifelse{html}{\out{Z<sub>t</sub>'}}{\eqn{Z_{t}^{'}}} to be a latent, discrete, exogenous variable with an unknown number of groups \eqn{m} and \eqn{\pi} is a vector of group means.
34 35
#' It is assumed that \eqn{Z} is independent of the error terms \eqn{\epsilon} and \eqn{\nu} and that it has at least two groups with different means.
35 36
#' The structural and random errors are considered normally distributed with mean zero and variance-covariance matrix \eqn{\Sigma}:
37 +
#'
36 38
#' \ifelse{html}{\out{<div style="text-align:center">&Sigma;=(&sigma;<sub>&epsilon;</sub><sup>2</sup>, &sigma;<sub>0</sub><sup>2</sup>,
37 39
#' <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&sigma;<sub>0</sub><sup>2</sup>, &sigma;<sub>&nu;</sub><sup>2</sup>)</div>}}{
38 40
#' \deqn{\Sigma = \left(
Files Coverage
R 97.18%
src/f_copulacorrection_LL_rcpp.cpp 95.65%
Project Totals (37 files) 97.16%

No yaml found.

Create your codecov.yml to customize your Codecov experience

Sunburst
The inner-most circle is the entire project, moving away from the center are folders then, finally, a single file. The size and color of each slice is representing the number of statements and the coverage, respectively.
Icicle
The top section represents the entire project. Proceeding with folders and finally individual files. The size and color of each slice is representing the number of statements and the coverage, respectively.
Grid
Each block represents a single file in the project. The size and color of each block is represented by the number of statements and the coverage, respectively.
Loading