fepegar / torchio

Compare 54cd1d6 ... +1 ... 77af571

Coverage Reach
transforms/augmentation/intensity/random_labels_to_image.py transforms/augmentation/intensity/random_motion.py transforms/augmentation/intensity/random_ghosting.py transforms/augmentation/intensity/random_swap.py transforms/augmentation/intensity/random_bias_field.py transforms/augmentation/intensity/random_spike.py transforms/augmentation/intensity/random_blur.py transforms/augmentation/intensity/random_noise.py transforms/augmentation/intensity/random_gamma.py transforms/augmentation/intensity/__init__.py transforms/augmentation/spatial/random_affine.py transforms/augmentation/spatial/random_elastic_deformation.py transforms/augmentation/spatial/random_flip.py transforms/augmentation/spatial/random_anisotropy.py transforms/augmentation/spatial/__init__.py transforms/augmentation/composition.py transforms/augmentation/random_transform.py transforms/augmentation/__init__.py transforms/preprocessing/spatial/resample.py transforms/preprocessing/spatial/crop_or_pad.py transforms/preprocessing/spatial/pad.py transforms/preprocessing/spatial/resize.py transforms/preprocessing/spatial/crop.py transforms/preprocessing/spatial/ensure_shape_multiple.py transforms/preprocessing/spatial/to_canonical.py transforms/preprocessing/spatial/copy_affine.py transforms/preprocessing/spatial/bounds_transform.py transforms/preprocessing/intensity/histogram_standardization.py transforms/preprocessing/intensity/rescale.py transforms/preprocessing/intensity/mask.py transforms/preprocessing/intensity/z_normalization.py transforms/preprocessing/intensity/clamp.py transforms/preprocessing/intensity/normalization_transform.py transforms/preprocessing/intensity/__init__.py transforms/preprocessing/label/remap_labels.py transforms/preprocessing/label/one_hot.py transforms/preprocessing/label/keep_largest_component.py transforms/preprocessing/label/sequential_labels.py transforms/preprocessing/label/contour.py transforms/preprocessing/label/remove_labels.py transforms/preprocessing/label/label_transform.py transforms/preprocessing/__init__.py transforms/transform.py transforms/data_parser.py transforms/__init__.py transforms/lambda_transform.py transforms/fourier.py transforms/intensity_transform.py transforms/interpolation.py transforms/spatial_transform.py data/image.py data/sampler/weighted.py data/sampler/grid.py data/sampler/label.py data/sampler/sampler.py data/sampler/uniform.py data/sampler/__init__.py data/io.py data/subject.py data/inference/aggregator.py data/inference/__init__.py data/queue.py data/dataset.py data/__init__.py datasets/mni/colin.py datasets/mni/icbm.py datasets/mni/pediatric.py datasets/mni/sheep.py datasets/mni/mni.py datasets/mni/__init__.py datasets/ixi.py datasets/rsna_spine_fracture.py datasets/episurg.py datasets/rsna_miccai.py datasets/bite.py datasets/medmnist.py datasets/itk_snap/itk_snap.py datasets/itk_snap/__init__.py datasets/visible_human.py datasets/fpg.py datasets/__init__.py datasets/slicer.py utils.py visualization.py download.py cli/apply_transform.py cli/print_info.py typing.py external/due.py constants.py __init__.py reference.py

No flags found

Use flags to group coverage reports by test type, project and/or folders.
Then setup custom commit statuses and notifications for each flag.

e.g., #unittest #integration

#production #enterprise

#frontend #backend

Learn more about Codecov Flags here.

Showing 1 of 1 files from the diff.

@@ -11,7 +11,7 @@
Loading
11 11
            transformed = torch.fft.fftn(tensor)
12 12
            fshift = torch.fft.fftshift(transformed)
13 13
            return fshift
14 -
        except ModuleNotFoundError:
14 +
        except ModuleNotFoundError or AttributeError:
15 15
            import torch
16 16
            transformed = np.fft.fftn(tensor)
17 17
            fshift = np.fft.fftshift(transformed)
@@ -24,7 +24,7 @@
Loading
24 24
            f_ishift = torch.fft.ifftshift(tensor)
25 25
            img_back = torch.fft.ifftn(f_ishift)
26 26
            return img_back
27 -
        except ModuleNotFoundError:
27 +
        except ModuleNotFoundError or AttributeError:
28 28
            import torch
29 29
            f_ishift = np.fft.ifftshift(tensor)
30 30
            img_back = np.fft.ifftn(f_ishift)

Everything is accounted for!

No changes detected that need to be reviewed.
What changes does Codecov check for?
Lines, not adjusted in diff, that have changed coverage data.
Files that introduced coverage data that had none before.
Files that have missing coverage data that once were tracked.
Files Coverage
src/torchio 86.19%
Project Totals (92 files) 86.19%
Loading