This commit changes the behavior back to TIGL 3.0. The difference to TIGL 3.0 is, that the tolerance check is size dependent and scales with the profile size.
1 |
/*
|
|
2 |
* Copyright (C) 2017 German Aerospace Center (DLR/SC)
|
|
3 |
*
|
|
4 |
* Created: 2017-05-24 Merlin Pelz <Merlin.Pelz@dlr.de>
|
|
5 |
*
|
|
6 |
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
7 |
* you may not use this file except in compliance with the License.
|
|
8 |
* You may obtain a copy of the License at
|
|
9 |
*
|
|
10 |
* http://www.apache.org/licenses/LICENSE-2.0
|
|
11 |
*
|
|
12 |
* Unless required by applicable law or agreed to in writing, software
|
|
13 |
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
14 |
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
15 |
* See the License for the specific language governing permissions and
|
|
16 |
* limitations under the License.
|
|
17 |
*/
|
|
18 |
|
|
19 |
#include "CTiglBSplineAlgorithms.h" |
|
20 |
#include "CTiglCurveNetworkSorter.h" |
|
21 |
#include "CTiglCurvesToSurface.h" |
|
22 |
#include "CTiglError.h" |
|
23 |
#include "CSharedPtr.h" |
|
24 |
#include "CTiglBSplineApproxInterp.h" |
|
25 |
#include "CTiglPointsToBSplineInterpolation.h" |
|
26 |
#include "to_string.h" |
|
27 |
#include "tiglcommonfunctions.h" |
|
28 |
#include "Debugging.h" |
|
29 |
|
|
30 |
#include <Standard_Version.hxx> |
|
31 |
#include <Geom2d_BSplineCurve.hxx> |
|
32 |
#include <Geom_BSplineCurve.hxx> |
|
33 |
#include <Geom_BSplineSurface.hxx> |
|
34 |
#include <Geom_TrimmedCurve.hxx> |
|
35 |
#include <GeomConvert.hxx> |
|
36 |
#include <Geom2dAPI_Interpolate.hxx> |
|
37 |
#include <GeomAPI_ExtremaCurveCurve.hxx> |
|
38 |
#include <TColStd_Array2OfReal.hxx> |
|
39 |
#include <TColStd_HArray1OfReal.hxx> |
|
40 |
#include <TColStd_HArray1OfInteger.hxx> |
|
41 |
#include <TColgp_HArray1OfPnt.hxx> |
|
42 |
#include <TColgp_HArray1OfPnt2d.hxx> |
|
43 |
#include <TColgp_Array1OfPnt2d.hxx> |
|
44 |
#include <TColgp_HArray2OfPnt.hxx> |
|
45 |
#include <BSplCLib.hxx> |
|
46 |
#include <GeomAPI_PointsToBSpline.hxx> |
|
47 |
#include <BRepTools.hxx> |
|
48 |
#include <BRepBuilderAPI_MakeFace.hxx> |
|
49 |
#include <BRepBuilderAPI_MakeEdge.hxx> |
|
50 |
#include <Precision.hxx> |
|
51 |
#include <Geom2dAPI_ProjectPointOnCurve.hxx> |
|
52 |
#include <GCPnts_AbscissaPoint.hxx> |
|
53 |
|
|
54 |
#include <cmath> |
|
55 |
#include <stdexcept> |
|
56 |
#include <algorithm> |
|
57 |
#include <cassert> |
|
58 |
|
|
59 |
namespace
|
|
60 |
{
|
|
61 |
|
|
62 |
class helper_function_unique |
|
63 |
{
|
|
64 |
public: |
|
65 |
helper_function_unique(double tolerance = 1e-15) |
|
66 |
: _tol(tolerance) |
|
67 |
{}
|
|
68 |
|
|
69 |
// helper function for std::unique
|
|
70 |
bool operator()(double a, double b) |
|
71 |
{
|
|
72 |
return (fabs(a - b) < _tol); |
|
73 |
}
|
|
74 |
private: |
|
75 |
double _tol; |
|
76 |
};
|
|
77 |
|
|
78 |
enum SurfAdapterDir |
|
79 |
{
|
|
80 |
udir = 0, |
|
81 |
vdir = 1 |
|
82 |
};
|
|
83 |
|
|
84 | 1 |
class SurfAdapterView |
85 |
{
|
|
86 |
public: |
|
87 | 1 |
SurfAdapterView(Handle(Geom_BSplineSurface) surf, SurfAdapterDir dir) |
88 | 1 |
: _surf(surf), _dir(dir) |
89 |
{
|
|
90 |
}
|
|
91 |
|
|
92 | 1 |
void insertKnot(double knot, int mult, double tolerance=1e-15) |
93 |
{
|
|
94 | 1 |
if (_dir == udir) { |
95 | 1 |
_surf->InsertUKnot(knot, mult, tolerance, false); |
96 |
}
|
|
97 |
else { |
|
98 | 1 |
_surf->InsertVKnot(knot, mult, tolerance, false); |
99 |
}
|
|
100 |
}
|
|
101 |
|
|
102 | 1 |
double getKnot(int idx) const |
103 |
{
|
|
104 | 1 |
if (_dir == udir) { |
105 | 1 |
return _surf->UKnot(idx); |
106 |
}
|
|
107 |
else { |
|
108 | 1 |
return _surf->VKnot(idx); |
109 |
}
|
|
110 |
}
|
|
111 |
|
|
112 | 1 |
int getMult(int idx) const |
113 |
{
|
|
114 | 1 |
if (_dir == udir) { |
115 | 1 |
return _surf->UMultiplicity(idx); |
116 |
}
|
|
117 |
else { |
|
118 | 1 |
return _surf->VMultiplicity(idx); |
119 |
}
|
|
120 |
}
|
|
121 |
|
|
122 | 1 |
int getNKnots() const |
123 |
{
|
|
124 | 1 |
if (_dir == udir) { |
125 | 1 |
return _surf->NbUKnots(); |
126 |
}
|
|
127 |
else { |
|
128 | 1 |
return _surf->NbVKnots(); |
129 |
}
|
|
130 |
}
|
|
131 |
|
|
132 | 1 |
int getDegree() const |
133 |
{
|
|
134 | 1 |
if (_dir == udir) { |
135 | 1 |
return _surf->UDegree(); |
136 |
}
|
|
137 |
else { |
|
138 | 1 |
return _surf->VDegree(); |
139 |
}
|
|
140 |
}
|
|
141 |
|
|
142 | 1 |
void setDir(SurfAdapterDir dir) |
143 |
{
|
|
144 | 1 |
_dir = dir; |
145 |
}
|
|
146 |
|
|
147 | 1 |
operator const Handle(Geom_BSplineSurface)&() const |
148 |
{
|
|
149 | 1 |
return _surf; |
150 |
}
|
|
151 |
private: |
|
152 |
Handle(Geom_BSplineSurface) _surf; |
|
153 |
SurfAdapterDir _dir; |
|
154 |
};
|
|
155 |
|
|
156 | 1 |
class CurveAdapterView |
157 |
{
|
|
158 |
public: |
|
159 | 1 |
CurveAdapterView(Handle(Geom_BSplineCurve) curve) |
160 | 1 |
: _curve(curve) |
161 |
{
|
|
162 |
}
|
|
163 |
|
|
164 | 1 |
void insertKnot(double knot, int mult, double tolerance=1e-15) |
165 |
{
|
|
166 | 1 |
_curve->InsertKnot(knot, mult, tolerance, false); |
167 |
}
|
|
168 |
|
|
169 | 1 |
double getKnot(int idx) const |
170 |
{
|
|
171 | 1 |
return _curve->Knot(idx); |
172 |
}
|
|
173 |
|
|
174 | 1 |
int getMult(int idx) const |
175 |
{
|
|
176 | 1 |
return _curve->Multiplicity(idx); |
177 |
}
|
|
178 |
|
|
179 | 1 |
int getNKnots() const |
180 |
{
|
|
181 | 1 |
return _curve->NbKnots(); |
182 |
}
|
|
183 |
|
|
184 | 1 |
int getDegree() const |
185 |
{
|
|
186 | 1 |
return _curve->Degree(); |
187 |
}
|
|
188 |
|
|
189 | 1 |
operator const Handle(Geom_BSplineCurve)&() const |
190 |
{
|
|
191 | 1 |
return _curve; |
192 |
}
|
|
193 |
|
|
194 |
private: |
|
195 |
Handle(Geom_BSplineCurve) _curve; |
|
196 |
};
|
|
197 |
|
|
198 |
template <class SplineAdapter> |
|
199 | 1 |
bool haveSameRange(const std::vector<SplineAdapter>& splines_vector, double par_tolerance) |
200 |
{
|
|
201 | 1 |
double begin_param_dir = splines_vector[0].getKnot(1); |
202 | 1 |
double end_param_dir = splines_vector[0].getKnot(splines_vector[0].getNKnots()); |
203 | 1 |
for (unsigned int spline_idx = 1; spline_idx < splines_vector.size(); ++spline_idx) { |
204 | 1 |
const SplineAdapter& curSpline = splines_vector[spline_idx]; |
205 | 1 |
double begin_param_dir_surface = curSpline.getKnot(1); |
206 | 1 |
double end_param_dir_surface = curSpline.getKnot(curSpline.getNKnots()); |
207 | 1 |
if (std::abs(begin_param_dir_surface - begin_param_dir) > par_tolerance || std::abs(end_param_dir_surface - end_param_dir) > par_tolerance) { |
208 | 1 |
return false; |
209 |
}
|
|
210 |
}
|
|
211 | 1 |
return true; |
212 |
}
|
|
213 |
|
|
214 |
template <class SplineAdapter> |
|
215 | 1 |
bool haveSameDegree(const std::vector<SplineAdapter>& splines) |
216 |
{
|
|
217 | 1 |
int degree = splines[0].getDegree(); |
218 | 1 |
for (unsigned int splineIdx = 1; splineIdx < splines.size(); ++splineIdx) { |
219 | 1 |
if (splines[splineIdx].getDegree() != degree) { |
220 |
return false; |
|
221 |
}
|
|
222 |
}
|
|
223 | 1 |
return true; |
224 |
}
|
|
225 |
|
|
226 |
/**
|
|
227 |
* @brief createCommonKnotsVectorImpl:
|
|
228 |
* Creates a common knot vector in u- or v-direction of the given vector of B-splines
|
|
229 |
* The common knot vector contains all knots in u- or v-direction of all splines with the highest multiplicity of all splines.
|
|
230 |
* @param old_splines_vector:
|
|
231 |
* the given vector of B-spline splines that could have a different knot vector in u- or v-direction
|
|
232 |
*/
|
|
233 |
template <class SplineAdapter> |
|
234 | 1 |
void makeGeometryCompatibleImpl(std::vector<SplineAdapter>& splines_vector, double par_tolerance) |
235 |
{
|
|
236 |
// all B-spline splines must have the same parameter range in the chosen direction
|
|
237 | 1 |
if (!haveSameRange(splines_vector, par_tolerance)) { |
238 | 1 |
throw tigl::CTiglError("B-splines don't have the same parameter range at least in one direction (u / v) in method createCommonKnotsVectorImpl!", TIGL_MATH_ERROR); |
239 |
}
|
|
240 |
|
|
241 |
// all B-spline splines must have the same degree in the chosen direction
|
|
242 | 1 |
if (!haveSameDegree(splines_vector)) { |
243 |
throw tigl::CTiglError("B-splines don't have the same degree at least in one direction (u / v) in method createCommonKnotsVectorImpl!", TIGL_MATH_ERROR); |
|
244 |
}
|
|
245 |
|
|
246 |
// The parametric tolerance must be smaller than half of the minimum knot distance
|
|
247 | 1 |
for (typename std::vector<SplineAdapter>::const_iterator splineIt = splines_vector.begin(); splineIt != splines_vector.end(); ++splineIt) { |
248 | 1 |
const SplineAdapter& spline = *splineIt; |
249 | 1 |
for (int iKnot = 1; iKnot < spline.getNKnots(); ++iKnot) { |
250 | 1 |
double knotDist = spline.getKnot(iKnot+1) - spline.getKnot(iKnot); |
251 | 1 |
par_tolerance = std::min(par_tolerance, knotDist / 2.); |
252 |
}
|
|
253 |
}
|
|
254 |
|
|
255 |
// insert all knots in first spline
|
|
256 | 1 |
SplineAdapter& firstSpline = splines_vector[0]; |
257 | 1 |
for (typename std::vector<SplineAdapter>::const_iterator splineIt = splines_vector.begin()+1; splineIt != splines_vector.end(); ++splineIt) { |
258 | 1 |
const SplineAdapter& spline = *splineIt; |
259 | 1 |
for (int knot_idx = 2; knot_idx < spline.getNKnots(); ++knot_idx) { |
260 | 1 |
double knot = spline.getKnot(knot_idx); |
261 | 1 |
int mult = spline.getMult(knot_idx); |
262 | 1 |
firstSpline.insertKnot(knot, mult, par_tolerance); |
263 |
}
|
|
264 |
}
|
|
265 |
|
|
266 |
|
|
267 |
// now insert knots from first into all others
|
|
268 | 1 |
for (typename std::vector<SplineAdapter>::iterator splineIt = splines_vector.begin()+1; splineIt != splines_vector.end(); ++splineIt) { |
269 | 1 |
SplineAdapter& spline = *splineIt; |
270 | 1 |
for (int knot_idx = 2; knot_idx < firstSpline.getNKnots(); ++knot_idx) { |
271 | 1 |
double knot = firstSpline.getKnot(knot_idx); |
272 | 1 |
int mult = firstSpline.getMult(knot_idx); |
273 | 1 |
spline.insertKnot(knot, mult, par_tolerance); |
274 |
}
|
|
275 | 1 |
if (spline.getNKnots() != firstSpline.getNKnots()) { |
276 |
throw tigl::CTiglError("Unexpected error in Algorithm makeGeometryCompatibleImpl.\nPlease contact the developers."); |
|
277 |
}
|
|
278 |
}
|
|
279 |
|
|
280 |
|
|
281 |
} // makeGeometryCompatibleImpl |
|
282 |
|
|
283 |
template <class OccMatrix, class OccVector, class OccHandleVector> |
|
284 | 1 |
OccHandleVector array2GetColumn(const OccMatrix& matrix, int colIndex) |
285 |
{
|
|
286 | 1 |
OccHandleVector colVector = new OccVector(matrix.LowerRow(), matrix.UpperRow()); |
287 |
|
|
288 | 1 |
for (int rowIdx = matrix.LowerRow(); rowIdx <= matrix.UpperRow(); ++rowIdx) { |
289 | 1 |
colVector->SetValue(rowIdx, matrix(rowIdx, colIndex)); |
290 |
}
|
|
291 |
|
|
292 | 1 |
return colVector; |
293 |
}
|
|
294 |
|
|
295 |
template <class OccMatrix, class OccVector, class OccHandleVector> |
|
296 | 1 |
OccHandleVector array2GetRow(const OccMatrix& matrix, int rowIndex) |
297 |
{
|
|
298 | 1 |
OccHandleVector rowVector = new OccVector(matrix.LowerCol(), matrix.UpperCol()); |
299 |
|
|
300 | 1 |
for (int colIdx = matrix.LowerCol(); colIdx <= matrix.UpperCol(); ++colIdx) { |
301 | 1 |
rowVector->SetValue(colIdx, matrix(rowIndex, colIdx)); |
302 |
}
|
|
303 |
|
|
304 | 1 |
return rowVector; |
305 |
}
|
|
306 |
|
|
307 | 1 |
Handle_TColgp_HArray1OfPnt pntArray2GetColumn(const TColgp_Array2OfPnt& matrix, int colIndex) |
308 |
{
|
|
309 | 1 |
return array2GetColumn<TColgp_Array2OfPnt, TColgp_HArray1OfPnt, Handle_TColgp_HArray1OfPnt>(matrix, colIndex); |
310 |
}
|
|
311 |
|
|
312 | 1 |
Handle_TColgp_HArray1OfPnt pntArray2GetRow(const TColgp_Array2OfPnt& matrix, int rowIndex) |
313 |
{
|
|
314 | 1 |
return array2GetRow<TColgp_Array2OfPnt, TColgp_HArray1OfPnt, Handle_TColgp_HArray1OfPnt>(matrix, rowIndex); |
315 |
}
|
|
316 |
|
|
317 |
} // namespace |
|
318 |
|
|
319 |
|
|
320 |
namespace tigl |
|
321 |
{
|
|
322 |
|
|
323 |
const double CTiglBSplineAlgorithms::REL_TOL_CLOSED = 1e-8; |
|
324 |
|
|
325 | 1 |
bool CTiglBSplineAlgorithms::isUDirClosed(const TColgp_Array2OfPnt& points, double tolerance) |
326 |
{
|
|
327 | 1 |
bool uDirClosed = true; |
328 | 1 |
int ulo = points.LowerRow(); |
329 | 1 |
int uhi = points.UpperRow(); |
330 |
// check that first row and last row are the same
|
|
331 | 1 |
for (int v_idx = points.LowerCol(); v_idx <= points.UpperCol(); ++v_idx) { |
332 | 1 |
gp_Pnt pfirst = points.Value(ulo, v_idx); |
333 | 1 |
gp_Pnt pLast = points.Value(uhi, v_idx); |
334 | 1 |
uDirClosed = uDirClosed & pfirst.IsEqual(pLast, tolerance); |
335 |
}
|
|
336 | 1 |
return uDirClosed; |
337 |
}
|
|
338 |
|
|
339 | 1 |
bool CTiglBSplineAlgorithms::isVDirClosed(const TColgp_Array2OfPnt& points, double tolerance) |
340 |
{
|
|
341 | 1 |
bool vDirClosed = true; |
342 | 1 |
int vlo = points.LowerCol(); |
343 | 1 |
int vhi = points.UpperCol(); |
344 | 1 |
for (int u_idx = points.LowerRow(); u_idx <= points.UpperRow(); ++u_idx) { |
345 | 1 |
vDirClosed = vDirClosed & points.Value(u_idx, vlo).IsEqual(points.Value(u_idx, vhi), tolerance); |
346 |
}
|
|
347 | 1 |
return vDirClosed; |
348 |
}
|
|
349 |
|
|
350 | 1 |
std::vector<double> CTiglBSplineAlgorithms::knotsFromCurveParameters(std::vector<double> ¶ms, unsigned int degree, bool closedCurve) |
351 |
{
|
|
352 | 1 |
if (params.size() < 2) { |
353 |
throw CTiglError("Parameters must contain two or more elements."); |
|
354 |
}
|
|
355 |
|
|
356 | 1 |
size_t nCP = params.size(); |
357 | 1 |
if (closedCurve) { |
358 |
// For each continuity condition, we have to add one control point
|
|
359 | 1 |
nCP += degree - 1; |
360 |
}
|
|
361 | 1 |
size_t nInnerKnots = nCP - degree + 1; |
362 |
|
|
363 | 1 |
std::vector<double> innerKnots(nInnerKnots); |
364 | 1 |
innerKnots.front() = params.front(); |
365 | 1 |
innerKnots.back() = params.back(); |
366 |
|
|
367 | 1 |
std::vector<double> knots; |
368 |
|
|
369 | 1 |
if (closedCurve && degree % 2 == 0) { |
370 | 1 |
size_t m = params.size() - 2; |
371 |
|
|
372 |
// build difference vector
|
|
373 | 1 |
std::vector<double> dparm(m + 1, 0.); |
374 | 1 |
for (size_t iparm = 0; iparm <= m; ++iparm) { |
375 | 1 |
dparm[iparm] = (params[iparm+1] - params[iparm]); |
376 |
}
|
|
377 |
|
|
378 | 1 |
innerKnots[1] = innerKnots[0] + 0.5 * (dparm[0] + dparm[m]); |
379 | 1 |
for (size_t iparm = 1; iparm < m; ++iparm) { |
380 | 1 |
innerKnots[iparm + 1] = innerKnots[iparm] + 0.5 * (dparm[iparm-1] + dparm[iparm]); |
381 |
}
|
|
382 |
|
|
383 |
// shift parameters
|
|
384 | 1 |
for (size_t iparm = 0; iparm < params.size(); ++iparm) { |
385 | 1 |
params[iparm] += dparm[m] / 2.; |
386 |
}
|
|
387 |
|
|
388 |
}
|
|
389 | 1 |
else if (closedCurve) { |
390 | 1 |
assert(innerKnots.size() == params.size()); |
391 | 1 |
innerKnots = params; |
392 |
}
|
|
393 |
else { |
|
394 |
// averaging
|
|
395 | 1 |
for (size_t j = 1; j < params.size() - degree; ++j) { |
396 | 1 |
double sum = 0.; |
397 |
// average
|
|
398 | 1 |
for (size_t i = j; i <= j + degree - 1; ++i) { |
399 | 1 |
sum += params[i]; |
400 |
}
|
|
401 |
|
|
402 | 1 |
innerKnots[j] = sum / static_cast<double>(degree); |
403 |
}
|
|
404 |
}
|
|
405 |
|
|
406 | 1 |
if (closedCurve) { |
407 | 1 |
double offset = innerKnots[0] - innerKnots[nInnerKnots -1]; |
408 | 1 |
for (size_t iknot = 0; iknot < degree; ++iknot) { |
409 | 1 |
knots.push_back(offset + innerKnots[nInnerKnots - degree -1 + iknot]); |
410 |
}
|
|
411 | 1 |
for (size_t iknot = 0; iknot < nInnerKnots; ++iknot) { |
412 | 1 |
knots.push_back(innerKnots[iknot]); |
413 |
}
|
|
414 | 1 |
for (size_t iknot = 0; iknot < degree; ++iknot) { |
415 | 1 |
knots.push_back(-offset + innerKnots[iknot + 1]); |
416 |
}
|
|
417 |
}
|
|
418 |
else { |
|
419 | 1 |
for (size_t iknot = 0; iknot < degree; ++iknot) { |
420 | 1 |
knots.push_back(innerKnots[0]); |
421 |
}
|
|
422 | 1 |
for (size_t iknot = 0; iknot < nInnerKnots; ++iknot) { |
423 | 1 |
knots.push_back(innerKnots[iknot]); |
424 |
}
|
|
425 | 1 |
for (size_t iknot = 0; iknot < degree; ++iknot) { |
426 | 1 |
knots.push_back(innerKnots[nInnerKnots - 1]); |
427 |
}
|
|
428 |
}
|
|
429 |
|
|
430 | 1 |
if (closedCurve && degree <= 1) { |
431 | 1 |
size_t nKnots = knots.size(); |
432 | 1 |
knots[0] = knots[1]; |
433 | 1 |
knots[nKnots - 1] = knots[nKnots - 2]; |
434 |
}
|
|
435 |
|
|
436 | 1 |
return knots; |
437 |
}
|
|
438 |
|
|
439 | 1 |
double CTiglBSplineAlgorithms::scale(const TColgp_Array2OfPnt& points) |
440 |
{
|
|
441 | 1 |
double theScale = 0.; |
442 | 1 |
for (int uidx = points.LowerRow(); uidx <= points.UpperRow(); ++uidx) { |
443 | 1 |
gp_Pnt pFirst = points.Value(uidx, points.LowerCol()); |
444 | 1 |
for (int vidx = points.LowerCol() + 1; vidx <= points.UpperCol(); ++vidx) { |
445 | 1 |
double dist = pFirst.Distance(points.Value(uidx, vidx)); |
446 | 1 |
theScale = std::max(theScale, dist); |
447 |
}
|
|
448 |
}
|
|
449 | 1 |
return theScale; |
450 |
}
|
|
451 |
|
|
452 | 1 |
double CTiglBSplineAlgorithms::scale(const TColgp_Array1OfPnt& points) |
453 |
{
|
|
454 | 1 |
double theScale = 0.; |
455 |
|
|
456 | 1 |
for (int i = points.Lower(); i <= points.Upper(); ++i) { |
457 | 1 |
for (int j = i + 1; j < points.Upper(); ++j) { |
458 | 1 |
double dist = points.Value(i).Distance(points.Value(j)); |
459 | 1 |
theScale = std::max(theScale, dist); |
460 |
}
|
|
461 |
}
|
|
462 | 1 |
return theScale; |
463 |
}
|
|
464 |
|
|
465 | 1 |
std::vector<double> CTiglBSplineAlgorithms::computeParamsBSplineCurve(const Handle(TColgp_HArray1OfPnt)& points, const double alpha) |
466 |
{
|
|
467 | 1 |
return computeParamsBSplineCurve(points, 0., 1., alpha); |
468 |
}
|
|
469 |
|
|
470 | 1 |
std::vector<double> CTiglBSplineAlgorithms::computeParamsBSplineCurve(const Handle(TColgp_HArray1OfPnt)& points, double umin, double umax, const double alpha) |
471 |
{
|
|
472 | 1 |
if ( umax <= umin ) { |
473 |
throw tigl::CTiglError("The specified start parameter is larger than the specified end parameter"); |
|
474 |
}
|
|
475 |
|
|
476 | 1 |
std::vector<double> parameters(static_cast<size_t>(points->Length())); |
477 |
|
|
478 | 1 |
parameters[0] = 0.; |
479 |
|
|
480 | 1 |
for (size_t i = 1; i < parameters.size(); ++i) { |
481 | 1 |
int iArray = static_cast<int>(i) + points->Lower(); |
482 | 1 |
double length = pow(points->Value(iArray).SquareDistance(points->Value(iArray - 1)), alpha / 2.); |
483 | 1 |
parameters[i] = parameters[i - 1] + length; |
484 |
}
|
|
485 |
|
|
486 | 1 |
double totalLength = parameters.back(); |
487 |
|
|
488 |
|
|
489 | 1 |
for (size_t i = 0; i < parameters.size(); ++i) { |
490 | 1 |
double ratio = 0.; |
491 | 1 |
if (totalLength < 1e-10) { |
492 | 1 |
ratio = static_cast<double>(i) / static_cast<double>(parameters.size()-1); |
493 |
}
|
|
494 |
else { |
|
495 | 1 |
ratio = parameters[i] / totalLength; |
496 |
}
|
|
497 | 1 |
parameters[i] = (umax - umin) * ratio + umin; |
498 |
}
|
|
499 |
|
|
500 | 1 |
return parameters; |
501 |
}
|
|
502 |
|
|
503 |
std::pair<std::vector<double>, std::vector<double> > |
|
504 | 1 |
CTiglBSplineAlgorithms::computeParamsBSplineSurf(const TColgp_Array2OfPnt& points, double alpha) |
505 |
{
|
|
506 |
// first for parameters in u-direction:
|
|
507 | 1 |
std::vector<double> paramsU(static_cast<size_t>(points.ColLength()), 0.); |
508 | 1 |
for (int vIdx = points.LowerCol(); vIdx <= points.UpperCol(); ++vIdx) { |
509 | 1 |
std::vector<double> parameters_u_line = computeParamsBSplineCurve(pntArray2GetColumn(points, vIdx), alpha); |
510 |
|
|
511 |
// average over columns
|
|
512 | 1 |
for (size_t uIdx = 0; uIdx < parameters_u_line.size(); ++uIdx) { |
513 | 1 |
paramsU[uIdx] += parameters_u_line[uIdx]/(double)points.RowLength(); |
514 |
}
|
|
515 |
}
|
|
516 |
|
|
517 |
|
|
518 |
// now for parameters in v-direction:
|
|
519 | 1 |
std::vector<double> paramsV(static_cast<size_t>(points.RowLength()), 0.); |
520 | 1 |
for (int uIdx = points.LowerRow(); uIdx <= points.UpperRow(); ++uIdx) { |
521 | 1 |
std::vector<double> parameters_v_line = computeParamsBSplineCurve(pntArray2GetRow(points, uIdx), alpha); |
522 |
|
|
523 |
// average over rows
|
|
524 | 1 |
for (size_t vIdx = 0; vIdx < parameters_v_line.size(); ++vIdx) { |
525 | 1 |
paramsV[vIdx] += parameters_v_line[vIdx]/(double)points.ColLength(); |
526 |
}
|
|
527 |
}
|
|
528 |
|
|
529 |
// put computed parameters for both u- and v-direction in output tuple
|
|
530 | 1 |
return std::make_pair(paramsU, paramsV); |
531 |
|
|
532 |
}
|
|
533 |
|
|
534 |
|
|
535 | 1 |
std::vector<Handle(Geom_BSplineCurve)> CTiglBSplineAlgorithms::createCommonKnotsVectorCurve(const std::vector<Handle(Geom_BSplineCurve)>& splines_vector, double tol) |
536 |
{
|
|
537 |
// Match parameter range
|
|
538 | 1 |
matchParameterRange(splines_vector, tol); |
539 |
|
|
540 |
// Create a copy that we can modify
|
|
541 | 1 |
std::vector<CurveAdapterView> splines_adapter; |
542 | 1 |
for (size_t i = 0; i < splines_vector.size(); ++i) { |
543 | 1 |
splines_adapter.push_back(Handle(Geom_BSplineCurve)::DownCast(splines_vector[i]->Copy())); |
544 |
}
|
|
545 |
|
|
546 | 1 |
makeGeometryCompatibleImpl(splines_adapter, tol); |
547 |
|
|
548 | 1 |
return std::vector<Handle(Geom_BSplineCurve)>(splines_adapter.begin(), splines_adapter.end()); |
549 |
}
|
|
550 |
|
|
551 | 1 |
std::vector<Handle(Geom_BSplineSurface) > CTiglBSplineAlgorithms::createCommonKnotsVectorSurface(const std::vector<Handle(Geom_BSplineSurface) >& old_surfaces_vector, SurfaceDirection dir) |
552 |
{
|
|
553 |
// Create a copy that we can modify
|
|
554 | 1 |
std::vector<SurfAdapterView> adapterSplines; |
555 | 1 |
for (size_t i = 0; i < old_surfaces_vector.size(); ++i) { |
556 | 1 |
adapterSplines.push_back(SurfAdapterView(Handle(Geom_BSplineSurface)::DownCast(old_surfaces_vector[i]->Copy()), udir)); |
557 |
}
|
|
558 |
|
|
559 | 1 |
if (dir == SurfaceDirection::u || dir == SurfaceDirection::both) { |
560 |
// first in u direction
|
|
561 | 1 |
makeGeometryCompatibleImpl(adapterSplines, 1e-14); |
562 |
}
|
|
563 |
|
|
564 | 1 |
if (dir == SurfaceDirection::v || dir == SurfaceDirection::both) { |
565 |
// now in v direction
|
|
566 | 1 |
for (size_t i = 0; i < old_surfaces_vector.size(); ++i) adapterSplines[i].setDir(vdir); |
567 | 1 |
makeGeometryCompatibleImpl(adapterSplines, 1e-14); |
568 |
}
|
|
569 |
|
|
570 | 1 |
return std::vector<Handle(Geom_BSplineSurface)>(adapterSplines.begin(), adapterSplines.end()); |
571 |
}
|
|
572 |
|
|
573 | 1 |
void CTiglBSplineAlgorithms::matchParameterRange(std::vector<Handle(Geom_BSplineCurve)> const& bsplines, double tolerance) |
574 |
{
|
|
575 | 1 |
Standard_Real umin = bsplines[0]->FirstParameter(); |
576 | 1 |
Standard_Real umax = bsplines[0]->LastParameter(); |
577 | 1 |
for (unsigned iP=1; iP<bsplines.size(); ++iP) { |
578 | 1 |
Handle(Geom_BSplineCurve) bspl = bsplines[iP]; |
579 | 1 |
if (fabs(bspl->FirstParameter() - umin) > tolerance || |
580 | 1 |
fabs(bspl->LastParameter() - umax) > tolerance ) { |
581 | 1 |
tigl::CTiglBSplineAlgorithms::reparametrizeBSpline(*bspl, umin, umax, tolerance); |
582 |
}
|
|
583 |
}
|
|
584 |
}
|
|
585 |
|
|
586 | 1 |
void CTiglBSplineAlgorithms::matchDegree(const std::vector<Handle(Geom_BSplineCurve) >& bsplines) |
587 |
{
|
|
588 | 1 |
int maxDegree = 0; |
589 | 1 |
for (std::vector<Handle(Geom_BSplineCurve) >::const_iterator it = bsplines.begin(); it != bsplines.end(); ++it) { |
590 | 1 |
int curDegree = (*it)->Degree(); |
591 | 1 |
if (curDegree > maxDegree) { |
592 | 1 |
maxDegree = curDegree; |
593 |
}
|
|
594 |
}
|
|
595 |
|
|
596 | 1 |
for (std::vector<Handle(Geom_BSplineCurve) >::const_iterator it = bsplines.begin(); it != bsplines.end(); ++it) { |
597 | 1 |
int curDegree = (*it)->Degree(); |
598 | 1 |
if (curDegree < maxDegree) { |
599 |
(*it)->IncreaseDegree(maxDegree); |
|
600 |
}
|
|
601 |
}
|
|
602 |
}
|
|
603 |
|
|
604 | 1 |
CTiglApproxResult CTiglBSplineAlgorithms::reparametrizeBSplineContinuouslyApprox(const Handle(Geom_BSplineCurve) spline, |
605 |
const std::vector<double>& old_parameters, |
|
606 |
const std::vector<double>& new_parameters, |
|
607 |
size_t n_control_pnts) |
|
608 |
{
|
|
609 | 1 |
if (old_parameters.size() != new_parameters.size()) { |
610 |
throw CTiglError("parameter sizes dont match"); |
|
611 |
}
|
|
612 |
|
|
613 |
// create a B-spline as a function for reparametrization
|
|
614 | 1 |
Handle(TColgp_HArray1OfPnt2d) old_parameters_pnts = new TColgp_HArray1OfPnt2d(1, static_cast<Standard_Integer>(old_parameters.size())); |
615 | 1 |
for (size_t parameter_idx = 0; parameter_idx < old_parameters.size(); ++parameter_idx) { |
616 | 1 |
int occIdx = static_cast<int>(parameter_idx + 1); |
617 | 1 |
old_parameters_pnts->SetValue(occIdx, gp_Pnt2d(old_parameters[parameter_idx], 0)); |
618 |
}
|
|
619 |
|
|
620 | 1 |
Geom2dAPI_Interpolate interpolationObject(old_parameters_pnts, OccFArray(new_parameters), false, 1e-15); |
621 | 1 |
interpolationObject.Perform(); |
622 |
|
|
623 |
// check that interpolation was successful
|
|
624 | 1 |
if (!interpolationObject.IsDone()) { |
625 |
throw CTiglError("Cannot reparametrize", TIGL_MATH_ERROR); |
|
626 |
}
|
|
627 |
|
|
628 | 1 |
Handle(Geom2d_BSplineCurve) reparametrizing_spline = interpolationObject.Curve(); |
629 |
|
|
630 |
// Create a vector of parameters including the intersection parameters
|
|
631 | 1 |
std::vector<double> breaks; |
632 | 1 |
for (size_t ipar = 1; ipar < new_parameters.size() - 1; ++ipar) { |
633 | 1 |
breaks.push_back(new_parameters[ipar]); |
634 |
}
|
|
635 |
|
|
636 | 1 |
double par_tol = 1e-10; |
637 |
|
|
638 |
#define MODEL_KINKS
|
|
639 |
#ifdef MODEL_KINKS
|
|
640 |
// remove kinks from breaks
|
|
641 | 1 |
std::vector<double> kinks = CTiglBSplineAlgorithms::getKinkParameters(spline); |
642 |
// convert kink parameters into reparamtetrized parameter using the
|
|
643 |
// inverse reparametrization function
|
|
644 | 1 |
for (size_t ikink = 0; ikink < kinks.size(); ++ikink) { |
645 | 1 |
kinks[ikink] = Geom2dAPI_ProjectPointOnCurve(gp_Pnt2d(kinks[ikink], 0.), reparametrizing_spline) |
646 | 1 |
.LowerDistanceParameter(); |
647 |
}
|
|
648 |
|
|
649 | 1 |
for (size_t ikink = 0; ikink < kinks.size(); ++ikink) { |
650 | 1 |
double kink = kinks[ikink]; |
651 | 1 |
std::vector<double>::iterator it = std::find_if(breaks.begin(), breaks.end(), IsInsideTolerance(kink, par_tol)); |
652 | 1 |
if (it != breaks.end()) { |
653 | 1 |
breaks.erase(it); |
654 |
}
|
|
655 |
}
|
|
656 |
#endif
|
|
657 |
|
|
658 |
// create equidistance array of parameters, including the breaks
|
|
659 | 1 |
std::vector<double> parameters = LinspaceWithBreaks(new_parameters.front(), |
660 | 1 |
new_parameters.back(), |
661 | 1 |
std::max(static_cast<size_t>(101), n_control_pnts*2), |
662 | 1 |
breaks); |
663 |
#ifdef MODEL_KINKS
|
|
664 |
// insert kinks into parameters array at the correct position
|
|
665 | 1 |
for (size_t ikink = 0; ikink < kinks.size(); ++ikink) { |
666 | 1 |
double kink = kinks[ikink]; |
667 | 1 |
parameters.insert( |
668 | 1 |
std::upper_bound( parameters.begin(), parameters.end(), kink), |
669 | 1 |
kink); |
670 |
}
|
|
671 |
#endif
|
|
672 |
|
|
673 |
// Compute points on spline at the new parameters
|
|
674 |
// Those will be approximated later on
|
|
675 | 1 |
TColgp_Array1OfPnt points(1, static_cast<Standard_Integer>(parameters.size())); |
676 | 1 |
for (size_t i = 1; i <= parameters.size(); ++i) { |
677 | 1 |
double oldParameter = reparametrizing_spline->Value(parameters[i-1]).X(); |
678 | 1 |
points(static_cast<Standard_Integer>(i)) = spline->Value(oldParameter); |
679 |
}
|
|
680 |
|
|
681 | 1 |
bool makeContinous = spline->IsClosed() && |
682 | 1 |
spline->DN(spline->FirstParameter(), 1).Angle(spline->DN(spline->LastParameter(), 1)) < 6. / 180. * M_PI; |
683 |
|
|
684 |
// Create the new spline as a interpolation of the old one
|
|
685 | 1 |
CTiglBSplineApproxInterp approximationObj(points, static_cast<int>(n_control_pnts), 3, makeContinous); |
686 |
|
|
687 | 1 |
breaks.insert(breaks.begin(), new_parameters.front()); |
688 | 1 |
breaks.push_back(new_parameters.back()); |
689 |
// Interpolate points at breaking parameters (required for gordon surface)
|
|
690 | 1 |
for (size_t ibreak = 0; ibreak < breaks.size(); ++ibreak) { |
691 | 1 |
double thebreak = breaks[ibreak]; |
692 |
size_t idx = static_cast<size_t>( |
|
693 | 1 |
std::find_if(parameters.begin(), parameters.end(), IsInsideTolerance(thebreak)) - |
694 | 1 |
parameters.begin()); |
695 | 1 |
approximationObj.InterpolatePoint(idx); |
696 |
}
|
|
697 |
|
|
698 |
#ifdef MODEL_KINKS
|
|
699 | 1 |
for (size_t ikink = 0; ikink < kinks.size(); ++ikink) { |
700 | 1 |
double kink = kinks[ikink]; |
701 |
size_t idx = static_cast<size_t>( |
|
702 | 1 |
std::find_if(parameters.begin(), parameters.end(), IsInsideTolerance(kink, par_tol)) - |
703 | 1 |
parameters.begin()); |
704 | 1 |
approximationObj.InterpolatePoint(idx, true); |
705 |
}
|
|
706 |
#endif
|
|
707 |
|
|
708 | 1 |
CTiglApproxResult result = approximationObj.FitCurveOptimal(parameters); |
709 |
|
|
710 | 1 |
assert(!result.curve.IsNull()); |
711 |
|
|
712 | 1 |
return result; |
713 |
}
|
|
714 |
|
|
715 | 1 |
Handle(Geom_BSplineSurface) CTiglBSplineAlgorithms::flipSurface(const Handle(Geom_BSplineSurface) surface) |
716 |
{
|
|
717 | 1 |
Handle(Geom_BSplineSurface) result = Handle(Geom_BSplineSurface)::DownCast(surface->Copy()); |
718 | 1 |
result->ExchangeUV(); |
719 | 1 |
return result; |
720 |
}
|
|
721 |
|
|
722 | 1 |
Handle(Geom_BSplineSurface) CTiglBSplineAlgorithms::pointsToSurface(const TColgp_Array2OfPnt& points, |
723 |
const std::vector<double>& uParams, |
|
724 |
const std::vector<double>& vParams, |
|
725 |
bool uContinousIfClosed, bool vContinousIfClosed) |
|
726 |
{
|
|
727 |
|
|
728 | 1 |
double tolerance = REL_TOL_CLOSED * scale(points); |
729 | 1 |
bool makeVDirClosed = vContinousIfClosed & isVDirClosed(points, tolerance); |
730 | 1 |
bool makeUDirClosed = uContinousIfClosed & isUDirClosed(points, tolerance); |
731 |
|
|
732 |
// first interpolate all points by B-splines in u-direction
|
|
733 | 1 |
std::vector<Handle(Geom_Curve)> uSplines; |
734 | 1 |
for (int cpVIdx = points.LowerCol(); cpVIdx <= points.UpperCol(); ++cpVIdx) { |
735 | 1 |
Handle_TColgp_HArray1OfPnt points_u = pntArray2GetColumn(points, cpVIdx); |
736 | 1 |
CTiglPointsToBSplineInterpolation interpolationObject(points_u, uParams, 3, makeUDirClosed); |
737 |
|
|
738 | 1 |
Handle(Geom_Curve) curve = interpolationObject.Curve(); |
739 | 1 |
uSplines.push_back(curve); |
740 |
}
|
|
741 |
|
|
742 |
// now create a skinned surface with these B-splines which represents the interpolating surface
|
|
743 | 1 |
CTiglCurvesToSurface skinner(uSplines, vParams, makeVDirClosed ); |
744 | 1 |
Handle(Geom_BSplineSurface) interpolatingSurf = skinner.Surface(); |
745 |
|
|
746 | 1 |
return interpolatingSurf; |
747 |
}
|
|
748 |
|
|
749 |
|
|
750 | 1 |
std::vector<std::pair<double, double> > CTiglBSplineAlgorithms::intersections(const Handle(Geom_BSplineCurve) spline1, const Handle(Geom_BSplineCurve) spline2, double tolerance) { |
751 |
// light weight simple minimizer
|
|
752 |
|
|
753 |
// check parametrization of B-splines beforehand
|
|
754 |
|
|
755 |
// find out the average scale of the two B-splines in order to being able to handle a more approximate curves and find its intersections
|
|
756 | 1 |
double splines_scale = (CTiglBSplineAlgorithms::scale(spline1) + CTiglBSplineAlgorithms::scale(spline2)) / 2.; |
757 |
|
|
758 | 1 |
std::vector<std::pair<double, double> > intersection_params_vector; |
759 | 1 |
GeomAPI_ExtremaCurveCurve intersectionObj(spline1, spline2); |
760 | 1 |
for (int intersect_idx = 1; intersect_idx <= intersectionObj.NbExtrema(); ++intersect_idx) { |
761 | 1 |
double param1 = 0.; |
762 | 1 |
double param2 = 0.; |
763 | 1 |
intersectionObj.Parameters(intersect_idx, param1, param2); |
764 |
|
|
765 |
// filter out real intersections
|
|
766 | 1 |
gp_Pnt point1 = spline1->Value(param1); |
767 | 1 |
gp_Pnt point2 = spline2->Value(param2); |
768 |
|
|
769 | 1 |
if (point1.Distance(point2) < tolerance * splines_scale) { |
770 | 1 |
intersection_params_vector.push_back(std::make_pair(param1, param2)); |
771 |
}
|
|
772 |
else { |
|
773 |
throw CTiglError("Curves do not intersect each other", TIGL_MATH_ERROR); |
|
774 |
}
|
|
775 |
|
|
776 |
// for closed B-splines:
|
|
777 | 1 |
if (intersectionObj.NbExtrema() == 1 && spline1->IsClosed() && std::abs(param1 - spline1->Knot(1)) < 1e-6) { |
778 |
// GeomAPI_ExtremaCurveCurve doesn't find second intersection point at the end of the closed curve, so add it by hand
|
|
779 | 1 |
intersection_params_vector.push_back(std::make_pair(spline1->Knot(spline1->NbKnots()), param2)); |
780 |
}
|
|
781 |
|
|
782 | 1 |
if (intersectionObj.NbExtrema() == 1 && spline1->IsClosed() && std::abs(param1 - spline1->Knot(spline1->NbKnots())) < 1e-6) { |
783 |
// GeomAPI_ExtremaCurveCurve doesn't find second intersection point at the beginning of the closed curve, so add it by hand
|
|
784 | 1 |
intersection_params_vector.push_back(std::make_pair(spline1->Knot(1), param2)); |
785 |
}
|
|
786 |
|
|
787 | 1 |
if (intersectionObj.NbExtrema() == 1 && spline2->IsClosed() && std::abs(param2 - spline2->Knot(1)) < 1e-6) { |
788 |
// GeomAPI_ExtremaCurveCurve doesn't find second intersection point at the end of the closed curve, so add it by hand
|
|
789 |
intersection_params_vector.push_back(std::make_pair(param1, spline2->Knot(spline2->NbKnots()))); |
|
790 |
}
|
|
791 |
|
|
792 | 1 |
if (intersectionObj.NbExtrema() == 1 && spline2->IsClosed() && std::abs(param2 - spline2->Knot(spline2->NbKnots())) < 1e-6) { |
793 |
// GeomAPI_ExtremaCurveCurve doesn't find second intersection point at the beginning of the closed curve, so add it by hand
|
|
794 |
intersection_params_vector.push_back(std::make_pair(param1, spline2->Knot(1))); |
|
795 |
}
|
|
796 |
}
|
|
797 |
|
|
798 |
|
|
799 | 1 |
return intersection_params_vector; |
800 |
}
|
|
801 |
|
|
802 | 1 |
double CTiglBSplineAlgorithms::scale(const std::vector<Handle(Geom_BSplineCurve)>& splines_vector) |
803 |
{
|
|
804 | 1 |
double maxScale = 0.; |
805 | 1 |
for (std::vector<Handle(Geom_BSplineCurve)>::const_iterator it = splines_vector.begin(); it != splines_vector.end(); ++it) { |
806 | 1 |
maxScale = std::max(scale(*it), maxScale); |
807 |
}
|
|
808 |
|
|
809 | 1 |
return maxScale; |
810 |
}
|
|
811 |
|
|
812 | 1 |
double CTiglBSplineAlgorithms::scale(const Handle(Geom_BSplineCurve)& spline) |
813 |
{
|
|
814 | 1 |
double scale = 0.; |
815 | 1 |
gp_Pnt first_ctrl_pnt = spline->Pole(1); |
816 | 1 |
for (int ctrl_pnt_idx = 2; ctrl_pnt_idx <= spline->NbPoles(); ++ctrl_pnt_idx) { |
817 |
// compute distance of the first control point to the others and save biggest distance
|
|
818 | 1 |
double distance = first_ctrl_pnt.Distance(spline->Pole(ctrl_pnt_idx)); |
819 |
|
|
820 | 1 |
scale = std::max(scale, distance); |
821 |
}
|
|
822 | 1 |
return scale; |
823 |
}
|
|
824 |
|
|
825 | 1 |
void CTiglBSplineAlgorithms::reparametrizeBSpline(Geom_BSplineCurve& spline, double umin, double umax, double tol) |
826 |
{
|
|
827 | 1 |
if (std::abs(spline.Knot(1) - umin) > tol || std::abs(spline.Knot(spline.NbKnots()) - umax) > tol) { |
828 | 1 |
TColStd_Array1OfReal aKnots (1, spline.NbKnots()); |
829 | 1 |
spline.Knots (aKnots); |
830 | 1 |
BSplCLib::Reparametrize (umin, umax, aKnots); |
831 | 1 |
spline.SetKnots (aKnots); |
832 |
}
|
|
833 |
}
|
|
834 |
|
|
835 | 1 |
void CTiglBSplineAlgorithms::reparametrizeBSpline(Geom_BSplineSurface& spline, double umin, double umax, double vmin, double vmax, double tol) |
836 |
{
|
|
837 | 1 |
if (std::abs(spline.UKnot(1) - umin) > tol || std::abs(spline.UKnot(spline.NbUKnots()) - umax) > tol) { |
838 | 1 |
TColStd_Array1OfReal aKnots (1, spline.NbUKnots()); |
839 | 1 |
spline.UKnots (aKnots); |
840 | 1 |
BSplCLib::Reparametrize (umin, umax, aKnots); |
841 | 1 |
spline.SetUKnots (aKnots); |
842 |
}
|
|
843 |
|
|
844 | 1 |
if (std::abs(spline.VKnot(1) - vmin) > tol || std::abs(spline.VKnot(spline.NbVKnots()) - vmax) > tol) { |
845 | 1 |
TColStd_Array1OfReal aKnots (1, spline.NbVKnots()); |
846 | 1 |
spline.VKnots (aKnots); |
847 | 1 |
BSplCLib::Reparametrize (vmin, vmax, aKnots); |
848 | 1 |
spline.SetVKnots (aKnots); |
849 |
}
|
|
850 |
}
|
|
851 |
|
|
852 | 1 |
CTiglApproxResult CTiglBSplineAlgorithms::reparametrizeBSplineNiceKnots(Handle(Geom_BSplineCurve) spline) |
853 |
{
|
|
854 | 1 |
if (spline.IsNull()) { |
855 | 1 |
throw CTiglError("Null Pointer curve", TIGL_NULL_POINTER); |
856 |
}
|
|
857 |
|
|
858 | 1 |
double umin = spline->FirstParameter(); |
859 | 1 |
double umax = spline->LastParameter(); |
860 |
|
|
861 |
// compute the number of desired knot segments
|
|
862 |
|
|
863 | 1 |
int nSegmentsOld = spline->NbPoles() - spline->Degree(); |
864 |
// The new number of segments is a power of two
|
|
865 | 1 |
int nSegmentsNew = pow(2.0, static_cast<int>(log2(static_cast<float>(nSegmentsOld)))); |
866 |
|
|
867 |
// we are using at least 8 segments to be safe with accuracy
|
|
868 | 1 |
nSegmentsNew = std::max(nSegmentsNew, 8); |
869 |
|
|
870 |
// The reparametrization results in a degree 3 spline
|
|
871 | 1 |
int target_degree = 3; |
872 | 1 |
return CTiglBSplineAlgorithms::reparametrizeBSplineContinuouslyApprox(spline, {umin, umax}, {umin, umax}, nSegmentsNew + target_degree); |
873 |
}
|
|
874 |
|
|
875 | 1 |
math_Matrix CTiglBSplineAlgorithms::bsplineBasisMat(int degree, const TColStd_Array1OfReal& knots, const TColStd_Array1OfReal& params, unsigned int derivOrder) |
876 |
{
|
|
877 | 1 |
Standard_Integer ncp = knots.Length() - degree - 1; |
878 | 1 |
math_Matrix mx(1, params.Length(), 1, ncp); |
879 | 1 |
mx.Init(0.); |
880 | 1 |
math_Matrix bspl_basis(1, derivOrder + 1, 1, degree + 1); |
881 | 1 |
bspl_basis.Init(0.); |
882 | 1 |
for (Standard_Integer iparm = 1; iparm <= params.Length(); ++iparm) { |
883 | 1 |
Standard_Integer basis_start_index = 0; |
884 |
#if OCC_VERSION_HEX >= VERSION_HEX_CODE(7,1,0)
|
|
885 |
BSplCLib::EvalBsplineBasis(derivOrder, degree + 1, knots, params.Value(iparm), basis_start_index, bspl_basis); |
|
886 |
#else
|
|
887 | 1 |
BSplCLib::EvalBsplineBasis(1, derivOrder, degree + 1, knots, params.Value(iparm), basis_start_index, bspl_basis); |
888 |
#endif
|
|
889 | 1 |
if(derivOrder > 0) { |
890 | 1 |
math_Vector help_vector(1, ncp); |
891 | 1 |
help_vector.Init(0.); |
892 | 1 |
help_vector.Set(basis_start_index, basis_start_index + degree, bspl_basis.Row(derivOrder + 1)); |
893 | 1 |
mx.SetRow(iparm, help_vector); |
894 |
}
|
|
895 |
else { |
|
896 | 1 |
mx.Set(iparm, iparm, basis_start_index, basis_start_index + degree, bspl_basis); |
897 |
}
|
|
898 |
}
|
|
899 | 1 |
return mx; |
900 |
}
|
|
901 |
|
|
902 | 1 |
std::vector<double> CTiglBSplineAlgorithms::getKinkParameters(const Handle(Geom_BSplineCurve)& curve) |
903 |
{
|
|
904 | 1 |
if (curve.IsNull()) { |
905 |
throw CTiglError("Null Pointer curve", TIGL_NULL_POINTER); |
|
906 |
}
|
|
907 |
|
|
908 | 1 |
double eps = 1e-8; |
909 |
|
|
910 | 1 |
std::vector<double> kinks; |
911 | 1 |
for (int knotIndex = 2; knotIndex < curve->NbKnots(); ++knotIndex) { |
912 | 1 |
if (curve->Multiplicity(knotIndex) == curve->Degree()) { |
913 | 1 |
double knot = curve->Knot(knotIndex); |
914 |
// check if really a kink
|
|
915 | 1 |
double angle = curve->DN(knot + eps, 1).Angle(curve->DN(knot - eps, 1)); |
916 | 1 |
if (angle > 6./180. * M_PI) { |
917 | 1 |
kinks.push_back(knot); |
918 |
}
|
|
919 |
}
|
|
920 |
}
|
|
921 |
|
|
922 | 1 |
return kinks; |
923 |
}
|
|
924 |
|
|
925 | 1 |
CTiglBSplineAlgorithms::SurfaceKinks CTiglBSplineAlgorithms::getKinkParameters(const Handle(Geom_BSplineSurface)& surface) |
926 |
{
|
|
927 | 1 |
if (surface.IsNull()) { |
928 |
throw CTiglError("Null Pointer curve", TIGL_NULL_POINTER); |
|
929 |
}
|
|
930 |
|
|
931 | 1 |
SurfaceKinks kinks; |
932 |
|
|
933 | 1 |
for (int knotIndex = 2; knotIndex < surface->NbUKnots(); ++knotIndex) { |
934 | 1 |
if (surface->UMultiplicity(knotIndex) == surface->UDegree()) { |
935 |
double knot = surface->UKnot(knotIndex); |
|
936 |
kinks.u.push_back(knot); |
|
937 |
}
|
|
938 |
}
|
|
939 |
|
|
940 | 1 |
for (int knotIndex = 2; knotIndex < surface->NbVKnots(); ++knotIndex) { |
941 | 1 |
if (surface->VMultiplicity(knotIndex) == surface->VDegree()) { |
942 |
double knot = surface->VKnot(knotIndex); |
|
943 |
kinks.v.push_back(knot); |
|
944 |
}
|
|
945 |
}
|
|
946 |
|
|
947 | 1 |
return kinks; |
948 |
}
|
|
949 |
|
|
950 | 1 |
Handle(Geom_BSplineSurface) CTiglBSplineAlgorithms::trimSurface(const Handle(Geom_Surface)& surface, double umin, double umax, double vmin, double vmax) |
951 |
{
|
|
952 |
|
|
953 | 1 |
Handle(Geom_BSplineSurface) trimmedSurface = GeomConvert::SurfaceToBSplineSurface(surface); |
954 |
|
|
955 | 1 |
trimmedSurface->SetUNotPeriodic(); |
956 | 1 |
trimmedSurface->SetVNotPeriodic(); |
957 |
|
|
958 |
// workaround for OCCT bug https://tracker.dev.opencascade.org/view.php?id=31402
|
|
959 |
// We set the trimming parameters to a knot, if they are close to them
|
|
960 | 1 |
double parTol = 1e-10; |
961 |
int i1, i2; |
|
962 | 1 |
trimmedSurface->LocateU(umin, parTol, i1, i2); |
963 | 1 |
if (i1 == i2) { |
964 |
// v is a knot
|
|
965 | 1 |
umin = trimmedSurface->UKnot(i1); |
966 |
}
|
|
967 | 1 |
trimmedSurface->LocateU(umax, parTol, i1, i2); |
968 | 1 |
if (i1 == i2) { |
969 |
// v is a knot
|
|
970 | 1 |
umax = trimmedSurface->UKnot(i1); |
971 |
}
|
|
972 | 1 |
trimmedSurface->LocateV(vmin, parTol, i1, i2); |
973 | 1 |
if (i1 == i2) { |
974 |
// v is a knot
|
|
975 | 1 |
vmin = trimmedSurface->VKnot(i1); |
976 |
}
|
|
977 | 1 |
trimmedSurface->LocateV(vmax, parTol, i1, i2); |
978 | 1 |
if (i1 == i2) { |
979 |
// v is a knot
|
|
980 | 1 |
vmax = trimmedSurface->VKnot(i1); |
981 |
}
|
|
982 |
|
|
983 |
// Perform the trimming
|
|
984 | 1 |
trimmedSurface->Segment(umin, umax, vmin, vmax); |
985 |
|
|
986 |
#ifdef DEBUG
|
|
987 |
double u1, u2, v1, v2; |
|
988 | 1 |
trimmedSurface->Bounds(u1, u2, v1, v2); |
989 |
|
|
990 | 1 |
double tol_check = 1e-12; |
991 | 1 |
auto intol = [tol_check](double a, double b) { |
992 | 1 |
return fabs(a - b) <= tol_check; |
993 | 1 |
};
|
994 |
|
|
995 | 1 |
assert(intol(u1, umin) && intol(u2, umax) && intol(v1, vmin) && intol(v2, vmax)); |
996 |
#endif
|
|
997 | 1 |
return trimmedSurface; |
998 |
}
|
|
999 |
|
|
1000 | 1 |
Handle(Geom_BSplineCurve) CTiglBSplineAlgorithms::trimCurve(const Handle(Geom_BSplineCurve)& curve, double umin, double umax) |
1001 |
{
|
|
1002 | 1 |
Handle(Geom_BSplineCurve) copy = Handle(Geom_BSplineCurve)::DownCast(curve->Copy()); |
1003 | 1 |
copy->Segment(umin, umax); |
1004 | 1 |
return copy; |
1005 |
}
|
|
1006 |
|
|
1007 | 1 |
Handle(Geom_BSplineCurve) CTiglBSplineAlgorithms::concatCurves(std::vector<Handle(Geom_BSplineCurve)> curves, |
1008 |
bool parByLength, double tolerance) |
|
1009 |
{
|
|
1010 |
|
|
1011 | 1 |
if (curves.size() == 0) { |
1012 |
LOG(ERROR) << "Empty curve vector in CTiglBSplineAlgorithms::concatCurves"; |
|
1013 |
return nullptr; |
|
1014 |
}
|
|
1015 | 1 |
else if (curves.size() == 1) { |
1016 | 1 |
return curves[0]; |
1017 |
}
|
|
1018 |
|
|
1019 | 1 |
std::vector<double> lengths; |
1020 | 1 |
double totalLen = 0; |
1021 | 1 |
int maxDegree = 0; |
1022 |
|
|
1023 |
// get the bsplines of each edge,
|
|
1024 |
// compute the lengths of each edge,
|
|
1025 |
// determine maximum degree of the curves
|
|
1026 | 1 |
for (auto curve : curves) { |
1027 |
|
|
1028 | 1 |
if (parByLength) { |
1029 |
// find out length of current curve
|
|
1030 | 1 |
Standard_Real umin = curve->FirstParameter(); |
1031 | 1 |
Standard_Real umax = curve->LastParameter(); |
1032 | 1 |
GeomAdaptor_Curve adaptorCurve(curve, umin, umax); |
1033 | 1 |
double len = GCPnts_AbscissaPoint::Length(adaptorCurve, umin, umax); |
1034 | 1 |
lengths.push_back(len); |
1035 | 1 |
totalLen += len; |
1036 |
}
|
|
1037 |
|
|
1038 |
// find out maximum degree
|
|
1039 | 1 |
if (curve->Degree() > maxDegree) { |
1040 | 1 |
maxDegree = curve->Degree(); |
1041 |
}
|
|
1042 |
}
|
|
1043 |
|
|
1044 |
|
|
1045 |
// check connectivities
|
|
1046 | 1 |
for (unsigned int icurve = 1; icurve < curves.size(); ++icurve) { |
1047 | 1 |
Handle(Geom_BSplineCurve) c1 = curves[icurve-1]; |
1048 | 1 |
Handle(Geom_BSplineCurve) c2 = curves[icurve]; |
1049 |
|
|
1050 | 1 |
gp_Pnt p1 = c1->Pole(c1->NbPoles()); |
1051 | 1 |
gp_Pnt p2 = c2->Pole(1); |
1052 |
|
|
1053 | 1 |
if (p1.Distance(p2) > tolerance) { |
1054 |
// error
|
|
1055 |
LOG(ERROR) << "Curves not connected within tolerance in concatCurves"; |
|
1056 |
return nullptr; |
|
1057 |
}
|
|
1058 |
}
|
|
1059 |
|
|
1060 |
// elevate degree of all curves to maxDegree
|
|
1061 | 1 |
for (unsigned int icurve = 0; icurve < curves.size(); ++icurve) { |
1062 | 1 |
Handle(Geom_BSplineCurve) curve = curves[icurve]; |
1063 | 1 |
curve->IncreaseDegree(maxDegree); |
1064 |
}
|
|
1065 |
|
|
1066 |
#ifdef DEBUG
|
|
1067 |
// check that each curve is at maxDegree
|
|
1068 | 1 |
for (unsigned int icurve = 0; icurve < curves.size(); ++icurve) { |
1069 | 1 |
Handle(Geom_BSplineCurve) curve = curves[icurve]; |
1070 | 1 |
assert(curve->Degree() == maxDegree); |
1071 |
}
|
|
1072 |
#endif
|
|
1073 |
|
|
1074 |
// shift knots of curves
|
|
1075 | 1 |
double startPar = 0; |
1076 | 1 |
for (unsigned int icurve = 0; icurve < curves.size(); ++icurve) { |
1077 | 1 |
Handle(Geom_BSplineCurve) curve = curves[icurve]; |
1078 | 1 |
double stopPar = startPar; |
1079 | 1 |
if (parByLength) { |
1080 | 1 |
stopPar += lengths[icurve]/totalLen; |
1081 |
}
|
|
1082 |
else { |
|
1083 | 1 |
stopPar += curve->LastParameter() - curve->FirstParameter(); |
1084 |
}
|
|
1085 | 1 |
CTiglBSplineAlgorithms::reparametrizeBSpline(*curve, startPar, stopPar); |
1086 | 1 |
curves[icurve] = curve; |
1087 |
|
|
1088 | 1 |
startPar = stopPar; |
1089 |
}
|
|
1090 |
|
|
1091 |
// count number of knots and control points for the final b-spline
|
|
1092 | 1 |
int nbknots = 1; |
1093 | 1 |
int nbcp = 1; |
1094 | 1 |
for (unsigned int icurve = 0; icurve < curves.size(); ++icurve) { |
1095 | 1 |
Handle(Geom_BSplineCurve) curve = curves[icurve]; |
1096 | 1 |
nbknots += curve->NbKnots() - 1; |
1097 | 1 |
nbcp += curve->NbPoles() - 1; |
1098 |
}
|
|
1099 |
|
|
1100 |
// allocate arrays
|
|
1101 | 1 |
TColgp_Array1OfPnt cpoints(1, nbcp); |
1102 | 1 |
TColStd_Array1OfReal weights(1, nbcp); |
1103 | 1 |
TColStd_Array1OfReal knots(1, nbknots); |
1104 | 1 |
TColStd_Array1OfInteger mults(1, nbknots); |
1105 |
|
|
1106 |
// concatenate everything
|
|
1107 | 1 |
int iknotT = 1, imultT = 1, icpT = 1, iweightT = 1; |
1108 | 1 |
for (unsigned int icurve = 0; icurve < curves.size(); ++icurve) { |
1109 | 1 |
Handle(Geom_BSplineCurve) curve = curves[icurve]; |
1110 |
|
|
1111 |
// special handling of the first knot, control point
|
|
1112 | 1 |
knots.SetValue(iknotT++, curve->Knot(1)); |
1113 | 1 |
if (icurve == 0) { |
1114 |
// we just copy the data of the very first point/knot
|
|
1115 | 1 |
mults.SetValue(imultT++, curve->Multiplicity(1)); |
1116 | 1 |
cpoints.SetValue(icpT++, curve->Pole(1)); |
1117 | 1 |
weights.SetValue(iweightT++, curve->Weight(1)); |
1118 |
}
|
|
1119 |
else { |
|
1120 |
// set multiplicity to maxDegree to allow c0 concatenation
|
|
1121 | 1 |
mults.SetValue(imultT++, maxDegree); |
1122 |
|
|
1123 |
// compute midpoint between endpoint of previous
|
|
1124 |
// curve and startpoint of current curve
|
|
1125 | 1 |
Handle(Geom_BSplineCurve) lastCurve = curves[icurve-1]; |
1126 | 1 |
gp_Pnt endPoint = lastCurve->Pole(lastCurve->NbPoles()); |
1127 | 1 |
gp_Pnt startPoint = curve->Pole(1); |
1128 | 1 |
gp_Pnt midPoint = (endPoint.XYZ() + startPoint.XYZ())/2.; |
1129 | 1 |
cpoints.SetValue(icpT++, midPoint); |
1130 |
|
|
1131 |
// we use the average weight of previous curve and current curve
|
|
1132 |
// This is probably wrong and could change the shape of the curve
|
|
1133 |
// Instead, one could scale all weights of the curve to match the weight of
|
|
1134 |
// the previous curve
|
|
1135 | 1 |
weights.SetValue(iweightT++, (lastCurve->Weight(lastCurve->NbPoles()) + curve->Weight(1))/2.); |
1136 |
}
|
|
1137 |
|
|
1138 |
// just copy control points, weights, knots and multiplicites
|
|
1139 | 1 |
for (int iknot = 2; iknot < curve->NbKnots(); ++iknot) { |
1140 | 1 |
knots.SetValue(iknotT++, curve->Knot(iknot)); |
1141 | 1 |
mults.SetValue(imultT++, curve->Multiplicity(iknot)); |
1142 |
}
|
|
1143 | 1 |
for (int icp = 2; icp < curve->NbPoles(); ++icp) { |
1144 | 1 |
cpoints.SetValue(icpT++, curve->Pole(icp)); |
1145 | 1 |
weights.SetValue(iweightT++, curve->Weight(icp)); |
1146 |
}
|
|
1147 |
|
|
1148 |
}
|
|
1149 |
|
|
1150 |
// special handling of the last point and knot
|
|
1151 | 1 |
Handle(Geom_BSplineCurve) lastCurve = curves[curves.size()-1]; |
1152 | 1 |
knots.SetValue(iknotT, lastCurve->Knot(lastCurve->NbKnots())); |
1153 | 1 |
mults.SetValue(imultT, lastCurve->Multiplicity(lastCurve->NbKnots())); |
1154 | 1 |
cpoints.SetValue(icpT, lastCurve->Pole(lastCurve->NbPoles())); |
1155 | 1 |
weights.SetValue(iweightT, lastCurve->Weight(lastCurve->NbPoles())); |
1156 |
|
|
1157 |
#ifdef DEBUG
|
|
1158 |
// check that we have the correct number of knots, control points etc...
|
|
1159 | 1 |
int nkn = 0; |
1160 | 1 |
for (int ik = knots.Lower(); ik <= knots.Upper(); ++ik) { |
1161 | 1 |
nkn += mults.Value(ik); |
1162 |
}
|
|
1163 |
|
|
1164 |
// check validity of bspline
|
|
1165 | 1 |
assert (cpoints.Length() + maxDegree + 1 == nkn); |
1166 |
#endif
|
|
1167 |
|
|
1168 |
// build the resulting B-Spline
|
|
1169 | 1 |
Handle(Geom_BSplineCurve) result = new Geom_BSplineCurve(cpoints, weights, knots, mults, maxDegree, false); |
1170 | 1 |
return result; |
1171 |
}
|
|
1172 |
|
|
1173 | 1 |
Handle(Geom_BSplineSurface) CTiglBSplineAlgorithms::concatSurfacesUDir(Handle(Geom_BSplineSurface) bspl1, |
1174 |
Handle(Geom_BSplineSurface) bspl2, |
|
1175 |
double space_tol) |
|
1176 |
{
|
|
1177 |
|
|
1178 | 1 |
DEBUG_SCOPE(debug); |
1179 | 1 |
debug.addShape(BRepBuilderAPI_MakeFace(bspl1, 1e-6).Face(), "surf1"); |
1180 | 1 |
debug.addShape(BRepBuilderAPI_MakeFace(bspl2, 1e-6).Face(), "surf2"); |
1181 |
|
|
1182 |
// the surfaces must not be periodic in u direction
|
|
1183 | 1 |
assert (bspl1->IsUPeriodic() == false); |
1184 | 1 |
assert (bspl2->IsUPeriodic() == false); |
1185 |
|
|
1186 |
// we dont have nurbs implemented right now
|
|
1187 | 1 |
assert (bspl1->IsURational() == false); |
1188 | 1 |
assert (bspl2->IsURational() == false); |
1189 | 1 |
assert (bspl1->IsVRational() == false); |
1190 | 1 |
assert (bspl2->IsVRational() == false); |
1191 |
|
|
1192 | 1 |
double param_tol = 1e-14; |
1193 |
|
|
1194 |
// check that surfaces are following parametrically
|
|
1195 |
double umin1, umax1, vmin1, vmax1; |
|
1196 | 1 |
bspl1->Bounds(umin1, umax1, vmin1, vmax1); |
1197 |
double umin2, umax2, vmin2, vmax2; |
|
1198 | 1 |
bspl2->Bounds(umin2, umax2, vmin2, vmax2); |
1199 |
|
|
1200 | 1 |
if (std::abs(umax1 - umin2) > param_tol) { |
1201 | 1 |
std::stringstream str; |
1202 | 1 |
str << "Surfaces do not follow in u-parametric direction in CTiglBSplineAlgorithms::concatSurfacesUDir. "; |
1203 | 1 |
str << "Surface 1 ends at " << umax1 << ", Surface 2 begins at " << umin2 << "!"; |
1204 | 1 |
throw CTiglError(str.str(), TIGL_MATH_ERROR); |
1205 |
}
|
|
1206 |
|
|
1207 | 1 |
bspl1->SetVNotPeriodic(); |
1208 | 1 |
bspl2->SetVNotPeriodic(); |
1209 |
|
|
1210 | 1 |
auto u_degree = std::max(bspl1->UDegree(), bspl2->UDegree()); |
1211 | 1 |
auto v_degree = std::max(bspl1->VDegree(), bspl2->VDegree()); |
1212 |
|
|
1213 | 1 |
bspl1->IncreaseDegree(u_degree, v_degree); |
1214 | 1 |
bspl2->IncreaseDegree(u_degree, v_degree); |
1215 |
|
|
1216 |
// check that corner points match
|
|
1217 | 1 |
auto leftCornerDist = bspl1->Value(umax1, vmin1).Distance(bspl2->Value(umin2, vmin2)); |
1218 | 1 |
auto rightCornerDist = bspl1->Value(umax1, vmax1).Distance(bspl2->Value(umin2, vmax2)) ; |
1219 | 1 |
if (leftCornerDist > space_tol || rightCornerDist > space_tol) { |
1220 | 1 |
throw CTiglError("Surfaces don't match within tolerances in CTiglBSplineAlgorithms::concatSurfacesUDir.", TIGL_MATH_ERROR); |
1221 |
}
|
|
1222 |
|
|
1223 | 1 |
auto spl_vec = CTiglBSplineAlgorithms::createCommonKnotsVectorSurface({bspl1, bspl2}, SurfaceDirection::v); |
1224 | 1 |
bspl1 = spl_vec[0]; |
1225 | 1 |
bspl2 = spl_vec[1]; |
1226 |
|
|
1227 | 1 |
assert(bspl1->NbVPoles() == bspl2->NbVPoles()); |
1228 |
|
|
1229 |
// concat control points
|
|
1230 | 1 |
TColgp_Array2OfPnt cpsNew(1, bspl1->NbUPoles() + bspl2->NbUPoles() - 1, 1, bspl1->NbVPoles()); |
1231 | 1 |
for (int iv = 0; iv < bspl1->NbVPoles(); ++iv) { |
1232 | 1 |
for (int iu = 0; iu < bspl1->NbUPoles() - 1; ++iu) { |
1233 | 1 |
cpsNew.SetValue(iu+1, iv+1, bspl1->Pole(iu+1, iv+1)); |
1234 |
}
|
|
1235 | 1 |
auto offset = bspl1->NbUPoles(); |
1236 | 1 |
for (int iu = 0; iu < bspl2->NbUPoles(); ++iu) { |
1237 | 1 |
cpsNew.SetValue(iu + offset, iv+1, bspl2->Pole(iu+1, iv+1)); |
1238 |
}
|
|
1239 |
}
|
|
1240 |
|
|
1241 |
// concat knots and mults
|
|
1242 | 1 |
TColStd_Array1OfReal uknots_new(1, bspl1->NbUKnots() + bspl2->NbUKnots() - 1); |
1243 | 1 |
TColStd_Array1OfInteger umults_new(1, bspl1->NbUKnots() + bspl2->NbUKnots() - 1); |
1244 |
|
|
1245 | 1 |
for (int i = 0; i < bspl1->NbUKnots()-1; ++i) { |
1246 | 1 |
uknots_new.SetValue(i+1, bspl1->UKnot(i+1)); |
1247 | 1 |
umults_new.SetValue(i+1, bspl1->UMultiplicity(i+1)); |
1248 |
}
|
|
1249 |
|
|
1250 | 1 |
int middleIdx = bspl1->NbUKnots(); |
1251 | 1 |
uknots_new.SetValue(middleIdx, 0.5 * (bspl1->UKnot(middleIdx) + bspl2->UKnot(1))); |
1252 | 1 |
umults_new.SetValue(middleIdx, bspl1->UMultiplicity(middleIdx) - 1); |
1253 |
|
|
1254 | 1 |
for (int i = 1; i < bspl2->NbUKnots(); ++i) { |
1255 | 1 |
uknots_new.SetValue(i + middleIdx, bspl2->UKnot(i+1)); |
1256 | 1 |
umults_new.SetValue(i + middleIdx, bspl2->UMultiplicity(i+1)); |
1257 |
}
|
|
1258 |
|
|
1259 |
// we simply take the v-knots of the first spline
|
|
1260 | 1 |
TColStd_Array1OfReal vknots_new(1, bspl1->NbVKnots()); |
1261 | 1 |
TColStd_Array1OfInteger vmults_new(1, bspl1->NbVKnots()); |
1262 | 1 |
bspl1->VKnots(vknots_new); |
1263 | 1 |
bspl1->VMultiplicities(vmults_new); |
1264 |
|
|
1265 |
#ifdef DEBUG
|
|
1266 | 1 |
int sum_umults = 0; |
1267 | 1 |
for (int i = umults_new.Lower(); i <= umults_new.Upper(); ++i) { |
1268 | 1 |
sum_umults += umults_new.Value(i); |
1269 |
}
|
|
1270 |
|
|
1271 | 1 |
int sum_vmults = 0; |
1272 | 1 |
for (int i = vmults_new.Lower(); i <= vmults_new.Upper(); ++i) { |
1273 | 1 |
sum_vmults += vmults_new.Value(i); |
1274 |
}
|
|
1275 |
|
|
1276 | 1 |
assert(cpsNew.ColLength() + u_degree + 1 == sum_umults); |
1277 | 1 |
assert(cpsNew.RowLength() + v_degree + 1 == sum_vmults); |
1278 |
#endif
|
|
1279 |
|
|
1280 |
return new Geom_BSplineSurface(cpsNew, uknots_new, vknots_new, |
|
1281 |
umults_new, vmults_new, |
|
1282 | 1 |
u_degree, v_degree, false, false); |
1283 |
}
|
|
1284 |
|
|
1285 | 1 |
Handle(Geom_BSplineSurface) CTiglBSplineAlgorithms::makeKnotsUniform(Handle(Geom_BSplineSurface) surf, unsigned int nseg_u, unsigned int nseg_v) |
1286 |
{
|
|
1287 |
double u1, u2, v1, v2; |
|
1288 | 1 |
surf->Bounds(u1, u2, v1, v2); |
1289 |
|
|
1290 |
// we create a degree 3 approximation in all directions
|
|
1291 | 1 |
auto ncp_u = std::max(4, static_cast<int>(nseg_u + 1)); |
1292 | 1 |
auto ncp_v = std::max(4, static_cast<int>(nseg_v + 1)); |
1293 |
|
|
1294 | 1 |
auto u = LinspaceWithBreaks(u1, u2, ncp_u, {}); |
1295 | 1 |
auto v = LinspaceWithBreaks(v1, v2, ncp_v, {}); |
1296 |
|
|
1297 | 1 |
TColgp_Array2OfPnt points(1, ncp_u, 1, ncp_v); |
1298 |
|
|
1299 | 1 |
for (size_t i = 0; i < u.size(); ++i) { |
1300 | 1 |
for (size_t j = 0; j < v.size(); ++j) { |
1301 | 1 |
auto pnt = surf->Value(u[i], v[j]); |
1302 | 1 |
points.SetValue(static_cast<Standard_Integer>(i+1), static_cast<Standard_Integer>(j+1), pnt); |
1303 |
}
|
|
1304 |
}
|
|
1305 |
|
|
1306 | 1 |
return CTiglBSplineAlgorithms::pointsToSurface(points, u, v, true, true); |
1307 |
}
|
|
1308 |
|
|
1309 |
} // namespace tigl |
Read our documentation on viewing source code .