No flags found
Use flags to group coverage reports by test type, project and/or folders.
Then setup custom commit statuses and notifications for each flag.
e.g., #unittest #integration
#production #enterprise
#frontend #backend
19ff9d2
... +0 ...
c73e8c0
Use flags to group coverage reports by test type, project and/or folders.
Then setup custom commit statuses and notifications for each flag.
e.g., #unittest #integration
#production #enterprise
#frontend #backend
63 | 63 | #' are thus included in the same cross-validation sample. Then, two random |
|
64 | 64 | #' forests are grown on these cross-validation samples, and for each random |
|
65 | 65 | #' forest, the other sample is used to calculate prediction error and variable |
|
66 | - | #' importance (see \href{http://doi.org/10.1007/s11634-016-0276-4}{Janitza, |
|
66 | + | #' importance (see \href{https://doi.org/10.1007/s11634-016-0276-4}{Janitza, |
|
67 | 67 | #' Celik, & Boulesteix, 2016}). |
|
68 | 68 | #' @import stats |
|
69 | 69 | #' @import ranger |
Files | Coverage |
---|---|
MF.R | 93.33% |
MF_cluster.R | 77.08% |
MetaForest.R | 90.91% |
ModelInfo_mf.R | 98.51% |
ModelInfo_rma.R | 0.00% |
PartialDependence.R | 47.01% |
SimulateSMD.R | 0.00% |
VarImpPlot.R | 84.62% |
WeightedScatter.R | 0.00% |
coef_test.R | 0.00% |
extract_proximity.MetaForest.R | 0.00% |
helpers.R | 11.11% |
marginal_predictions.R | 46.43% |
merge_forests.R | 96.88% |
plot.MetaForest.R | 30.43% |
predict.MetaForest.R | 71.43% |
preselect.R | 66.67% |
print.MetaForest.R | 0.00% |
print.summary.MetaForest.R | 0.00% |
summary.MetaForest.R | 90.91% |
Folder Totals (20 files) | 51.43% |
Project Totals (20 files) | 51.43% |
c73e8c0
19ff9d2