chakravala / Reduce.jl
1
global rs = nothing
2
@info "Precompiling extra Reduce methods (set `ENV[\"REDPRE\"]=\"0\"` to disable)"
3 0
Reduce.Load(); atexit(() -> kill(rs))
4

5
rcall(:((1+pi)^2)) == convert(Expr,RExpr(rcall("(1+pi)**2")))
6
try; "1/0" |> rcall; false; catch; true; end
7
RExpr("(x+i)^3")
8
Reduce._syme(Reduce.r_to_jl)
9
R"x+2" == R"2+x-1+1"
10
:((x+1+π)^2; int(1/(1+x^3),x)) |> RExpr |> Reduce.parse
11
string(R"x+1")
12
RExpr(:x) == R"x"
13
Algebra.:*(RExpr(:x),R"x") == R"x^2"
14
convert(RExpr,R"x").str == convert(Array{String,1},R"x")
15
load_package([:rlfi]) == load_package(:rlfi,:rlfi)
16
rcall(:(x^2+2x+1),off=[:factor])
17
rcall("x + 1","factor")
18
Expr(:function,:(fun(z)),:(return begin; x = 700; y = x; end)) |> RExpr |> Reduce.parse
19
Expr(:for,:(i=2:34),:(product(i))) |> rcall
20
try; Expr(:type,false,:x) |> RExpr; false; catch; true; end
21
try; :(@time f(x)) |> RExpr; false; catch; true; end
22
Expr(:function,:(fun(a,b)),:(return y=a^3+3*a^2*b+3*a*b^2+b^3)) |> factor |> expand
23
try; Expr(:for,:(i=2:34),:(product(i))) |> RExpr |> parse; false; catch; true; end
24
R"begin; 1:2; end" |> Reduce.parse |> RExpr |> string
25
latex(:(x+1))
26
#Algebra.length(:(x+y))
27
Algebra.log(:(^x))
28
#Algebra.nextprime(100)
29
#Algebra.ceiling(1.2)
30
Algebra.impart(:(1+2*im))
31
#Algebra.impart(2+1.7im)
32
#Algebra.bernoulli(2)
33
Sys.islinux() && Reduce.RSymReplace("!#03a9; *x**2 + !#03a9;")
34
Algebra.int(:(x^2+y),:x) |> RExpr == Algebra.int("x^2+y","x") |> RExpr
35
R"/(2,begin 2; +(7,4); return +(4,*(2,7))+9 end)" |> Reduce.parse
36
Algebra.df(Expr(:function,:(fun(z,c)),:(return begin; zn = z^2+c; nz = z^3-1; end))|>RExpr,:z)
37
:([1 2; 3 4]) |> RExpr |> Reduce.parse |> RExpr == [1 2; 3 4] |> RExpr
38

39
Algebra.nextprime("3")
40
expand("(x-2)^2") |> RExpr == R"(x-2)^2"
41
nat("x+1")
42
Algebra.:^(:x,2) == :(x^2)
43
Algebra.://(NaN,NaN)
44
join(split(R"x+1;x+2"))
45
Algebra.sub(:x=>7,Algebra.:+(:x,7)) == Algebra.sub([:x=>7,:z=>21],Algebra.:-(:z,:x))
46
#squash(Expr(:function,:(fun(x)),:(z=3;z+=:x))).args[2] == squash(:(y=:x;y+=3))
47
squash(:(sqrt(x)^2))
48
Expr(:block,:(x+1)) |> RExpr == R"1+x"
49
Algebra.limit(Algebra.:^(Algebra.:-(1,Algebra.:/(1,:n)),Algebra.:-(:n)),:n,Inf)
50
Algebra.log(Algebra.exp(:pi))
51
Algebra.://(2,Inf)
52
Algebra.://(Inf,2)
53

54
rcall("x")
55
Algebra.operator(:x); Algebra.clear(:x);
56
#try Algebra.det([:x :y]) catch; true end
57
join([R"1",R"1"]) == R"1;1"
58
list([R"1",R"x"]) == list((1,:x))
59
Reduce.lister(:x) == R"x"
60
!latex(false)
61
@rounded @factor x^2-2x+1
62
@rounded @off_factor @rcall x^2
63
Algebra.det([:a :b; :c :d])
64
Algebra.tp([:a;:b]) == [:a :b;]
65
transpose(:x)
66
adjoint(:x)
67
Algebra.operator(:cbrt)
68
Algebra.rlet(:(cbrt(~x))=>:(x^(1/3)))
69
Algebra.rlet([:(cbrt(~x))=>:(x^(1/3))])
70
Algebra.rlet(Dict(:(cbrt(~x))=>:(x^(1/3))))
71
Algebra.clear(:cbrt)
72
Algebra.:+(1,R"x")
73
Algebra.inv([:a :b; :c :d])
74
Algebra.inv(1)
75
Algebra.:\([1],[2])
76
#Algebra.://(1.0,1.0)
77
Algebra.:/([:a :b; :c :d],2)
78
Algebra.:+([:a :b; :c :d],1) == Algebra.:+(1,[:a :b; :c :d])
79
Algebra.:+([:x],1) == Algebra.:+(1,[:x])
80
Algebra.:+([:x,:y]',1) == Algebra.:+(1,[:x,:y]')
81
Algebra.solve(:(x-1),:x) == Algebra.solve((:(x-1),),:x)
82
Algebra.order(nothing); Algebra.korder(nothing)

Read our documentation on viewing source code .

Loading