No flags found
Use flags to group coverage reports by test type, project and/or folders.
Then setup custom commit statuses and notifications for each flag.
e.g., #unittest #integration
#production #enterprise
#frontend #backend
Use flags to group coverage reports by test type, project and/or folders.
Then setup custom commit statuses and notifications for each flag.
e.g., #unittest #integration
#production #enterprise
#frontend #backend
668  668  distribution of summary statistics. The pvalue corresponds to either a 

669  669  'twosided', 'left', or 'right'sided (default) test, as specified by 

670  670  side. According to Chen et al., 2016, this is the preferred nonparametric 

671    approach for controlling false positive rates (FPR) for onesample tests 

672    in the pairwise approach. The efficacy of this approach for controlling 

673    FPRs in the leaveoneout approach has not yet been systematically 

674    evaluated. 

671  +  approach for controlling false positive rates (FPRs) for onesample tests 

672  +  in the pairwise approach. Note that the bootstrap hypothesis test may not 

673  +  strictly control FPRs in the leaveoneout approach. 

675  674  
676  675  The implementation is based on the work in [Chen2016]_ and 

677  676  [HallWilson1991]_. 
714  713  p : float, pvalue 

715  714  pvalue based on bootstrap hypothesis test 

716  715  
717    distribution : ndarray, bootstraps by voxels (optional) 

718    Bootstrap distribution if return_bootstrap=True 

716  +  distribution : ndarray, n_bootstraps by voxels 

717  +  Bootstrap distribution 

719  718  
720  719  """ 

721  720 
1088  1087  The pvalue corresponds to either a 'twosided', 'left', or 'right'sided 

1089  1088  (default) test, as specified by side. According to Chen et al., 2016, 

1090  1089  this is the preferred nonparametric approach for controlling false 

1091    positive rates (FPR) for twosample tests. This approach may yield 

1092    inflated FPRs for onesample tests. 

1090  +  positive rates (FPRs) for twosample tests. Note that the permutation test 

1091  +  may not strictly control FPRs for onesample tests. 

1093  1092  
1094  1093  The implementation is based on the work in [Chen2016]_. 

1095  1094 
1124  1123  p : float, pvalue 

1125  1124  pvalue based on permutation test 

1126  1125  
1127    distribution : ndarray, permutations by voxels (optional) 

1128    Permutation distribution if return_bootstrap=True 

1126  +  distribution : ndarray, n_permutations by voxels 

1127  +  Permutation distribution 

1129  1128  """ 

1130  1129  
1131  1130  # Standardize structure of input data 
1281  1280  False. Returns the observed ISC and pvalues, as well as the null 

1282  1281  distribution of ISCs computed on randomly timeshifted data. The pvalue 

1283  1282  corresponds to either a 'twosided', 'left', or 'right'sided (default) 

1284    test, as specified by side. 

1283  +  test, as specified by side. Note that circular timeshift randomization 

1284  +  may not strictly control false positive rates (FPRs). 

1285  1285  
1286  1286  The implementation is based on the work in [Kauppi2010]_ and 

1287  1287  [Kauppi2014]_. 
1323  1323  p : float, pvalue 

1324  1324  pvalue based on timeshifting randomization test 

1325  1325  
1326    distribution : ndarray, timeshifts by voxels (optional) 

1327    Timeshifted null distribution if return_bootstrap=True 

1326  +  distribution : ndarray, n_shifts by voxels 

1327  +  Timeshifted null distribution 

1328  1328  """ 

1329  1329  
1330  1330  # Check response time series input format 
1349  1349  else: 

1350  1350  prng = np.random.RandomState(random_state) 

1351  1351  
1352    # Get a random set of shifts based on number of TRs, 

1352  +  # Get a random set of shifts based on number of TRs 

1353  1353  shifts = prng.choice(np.arange(n_TRs), size=n_subjects, 

1354  1354  replace=True) 

1355  1355 
1436  1436  to False. Returns the observed ISC and pvalues, as well as the null 

1437  1437  distribution of ISCs computed on phaserandomized data. The pvalue 

1438  1438  corresponds to either a 'twosided', 'left', or 'right'sided (default) 

1439    test, as specified by side. 

1439  +  test, as specified by side. Note that phase randomization may not 

1440  +  strictly control false positive rates (FPRs). 

1440  1441  
1441  1442  The implementation is based on the work in [Lerner2011]_ and 

1442  1443  [Simony2016]_. 
1477  1478  p : float, pvalue 

1478  1479  pvalue based on timeshifting randomization test 

1479  1480  
1480    distribution : ndarray, timeshifts by voxels (optional) 

1481    Timeshifted null distribution if return_bootstrap=True 

1481  +  distribution : ndarray, n_shifts by voxels 

1482  +  Phaseshifted null distribution 

1482  1483  """ 

1483  1484  
1484  1485  # Check response time series input format 
Files  Coverage 

brainiak  91.52% 
Project Totals (31 files)  91.52% 
#480
73fab38
79b20c0
776b7b8