1
|
|
"""Matplotlib mcseplot."""
|
2
|
2
|
import matplotlib.pyplot as plt
|
3
|
2
|
import numpy as np
|
4
|
2
|
from scipy.stats import rankdata
|
5
|
|
|
6
|
2
|
from ....stats.stats_utils import quantile as _quantile
|
7
|
2
|
from ...plot_utils import _scale_fig_size, make_label
|
8
|
2
|
from . import backend_kwarg_defaults, backend_show, create_axes_grid, matplotlib_kwarg_dealiaser
|
9
|
|
|
10
|
|
|
11
|
2
|
def plot_mcse(
|
12
|
|
ax,
|
13
|
|
plotters,
|
14
|
|
length_plotters,
|
15
|
|
rows,
|
16
|
|
cols,
|
17
|
|
figsize,
|
18
|
|
errorbar,
|
19
|
|
rug,
|
20
|
|
data,
|
21
|
|
probs,
|
22
|
|
kwargs,
|
23
|
|
extra_methods,
|
24
|
|
mean_mcse,
|
25
|
|
sd_mcse,
|
26
|
|
textsize,
|
27
|
|
text_kwargs,
|
28
|
|
rug_kwargs,
|
29
|
|
extra_kwargs,
|
30
|
|
idata,
|
31
|
|
rug_kind,
|
32
|
|
backend_kwargs,
|
33
|
|
show,
|
34
|
|
):
|
35
|
|
"""Matplotlib mcseplot."""
|
36
|
2
|
if backend_kwargs is None:
|
37
|
2
|
backend_kwargs = {}
|
38
|
|
|
39
|
2
|
backend_kwargs = {
|
40
|
|
**backend_kwarg_defaults(),
|
41
|
|
**backend_kwargs,
|
42
|
|
}
|
43
|
|
|
44
|
2
|
(figsize, ax_labelsize, titlesize, xt_labelsize, _linewidth, _markersize) = _scale_fig_size(
|
45
|
|
figsize, textsize, rows, cols
|
46
|
|
)
|
47
|
2
|
backend_kwargs.setdefault("figsize", figsize)
|
48
|
2
|
backend_kwargs["squeeze"] = True
|
49
|
|
|
50
|
2
|
kwargs = matplotlib_kwarg_dealiaser(kwargs, "plot")
|
51
|
2
|
kwargs.setdefault("linestyle", "none")
|
52
|
2
|
kwargs.setdefault("linewidth", _linewidth)
|
53
|
2
|
kwargs.setdefault("markersize", _markersize)
|
54
|
2
|
kwargs.setdefault("marker", "_" if errorbar else "o")
|
55
|
2
|
kwargs.setdefault("zorder", 3)
|
56
|
|
|
57
|
2
|
extra_kwargs = matplotlib_kwarg_dealiaser(extra_kwargs, "plot")
|
58
|
2
|
extra_kwargs.setdefault("linestyle", "-")
|
59
|
2
|
extra_kwargs.setdefault("linewidth", _linewidth / 2)
|
60
|
2
|
extra_kwargs.setdefault("color", "k")
|
61
|
2
|
extra_kwargs.setdefault("alpha", 0.5)
|
62
|
2
|
text_x = None
|
63
|
2
|
text_va = None
|
64
|
2
|
if extra_methods:
|
65
|
2
|
text_kwargs = matplotlib_kwarg_dealiaser(text_kwargs, "text")
|
66
|
2
|
text_x = text_kwargs.pop("x", 1)
|
67
|
2
|
text_kwargs.setdefault("fontsize", xt_labelsize * 0.7)
|
68
|
2
|
text_kwargs.setdefault("alpha", extra_kwargs["alpha"])
|
69
|
2
|
text_kwargs.setdefault("color", extra_kwargs["color"])
|
70
|
2
|
text_kwargs.setdefault("horizontalalignment", "right")
|
71
|
2
|
text_va = text_kwargs.pop("verticalalignment", None)
|
72
|
|
|
73
|
2
|
if ax is None:
|
74
|
2
|
_, ax = create_axes_grid(
|
75
|
|
length_plotters,
|
76
|
|
rows,
|
77
|
|
cols,
|
78
|
|
backend_kwargs=backend_kwargs,
|
79
|
|
)
|
80
|
|
|
81
|
2
|
for (var_name, selection, x), ax_ in zip(plotters, np.ravel(ax)):
|
82
|
2
|
if errorbar or rug:
|
83
|
2
|
values = data[var_name].sel(**selection).values.flatten()
|
84
|
2
|
if errorbar:
|
85
|
2
|
quantile_values = _quantile(values, probs)
|
86
|
2
|
ax_.errorbar(probs, quantile_values, yerr=x, **kwargs)
|
87
|
|
else:
|
88
|
2
|
ax_.plot(probs, x, label="quantile", **kwargs)
|
89
|
2
|
if extra_methods:
|
90
|
2
|
mean_mcse_i = mean_mcse[var_name].sel(**selection).values.item()
|
91
|
2
|
sd_mcse_i = sd_mcse[var_name].sel(**selection).values.item()
|
92
|
2
|
ax_.axhline(mean_mcse_i, **extra_kwargs)
|
93
|
2
|
ax_.annotate(
|
94
|
|
"mean",
|
95
|
|
(text_x, mean_mcse_i),
|
96
|
|
va=text_va
|
97
|
|
if text_va is not None
|
98
|
|
else "bottom"
|
99
|
|
if mean_mcse_i > sd_mcse_i
|
100
|
|
else "top",
|
101
|
|
**text_kwargs,
|
102
|
|
)
|
103
|
2
|
ax_.axhline(sd_mcse_i, **extra_kwargs)
|
104
|
2
|
ax_.annotate(
|
105
|
|
"sd",
|
106
|
|
(text_x, sd_mcse_i),
|
107
|
|
va=text_va
|
108
|
|
if text_va is not None
|
109
|
|
else "bottom"
|
110
|
|
if sd_mcse_i >= mean_mcse_i
|
111
|
|
else "top",
|
112
|
|
**text_kwargs,
|
113
|
|
)
|
114
|
2
|
if rug:
|
115
|
2
|
rug_kwargs = matplotlib_kwarg_dealiaser(rug_kwargs, "plot")
|
116
|
2
|
if not hasattr(idata, "sample_stats"):
|
117
|
2
|
raise ValueError("InferenceData object must contain sample_stats for rug plot")
|
118
|
2
|
if not hasattr(idata.sample_stats, rug_kind):
|
119
|
2
|
raise ValueError("InferenceData does not contain {} data".format(rug_kind))
|
120
|
2
|
rug_kwargs.setdefault("marker", "|")
|
121
|
2
|
rug_kwargs.setdefault("linestyle", rug_kwargs.pop("ls", "None"))
|
122
|
2
|
rug_kwargs.setdefault("color", rug_kwargs.pop("c", kwargs.get("color", "C0")))
|
123
|
2
|
rug_kwargs.setdefault("space", 0.1)
|
124
|
2
|
rug_kwargs.setdefault("markersize", rug_kwargs.pop("ms", 2 * _markersize))
|
125
|
|
|
126
|
2
|
mask = idata.sample_stats[rug_kind].values.flatten()
|
127
|
2
|
values = rankdata(values)[mask]
|
128
|
2
|
y_min, y_max = ax_.get_ylim()
|
129
|
2
|
y_min = y_min if errorbar else 0
|
130
|
2
|
rug_space = (y_max - y_min) * rug_kwargs.pop("space")
|
131
|
2
|
rug_x, rug_y = values / (len(mask) - 1), np.full_like(values, y_min) - rug_space
|
132
|
2
|
ax_.plot(rug_x, rug_y, **rug_kwargs)
|
133
|
2
|
ax_.axhline(y_min, color="k", linewidth=_linewidth, alpha=0.7)
|
134
|
|
|
135
|
2
|
ax_.set_title(make_label(var_name, selection), fontsize=titlesize, wrap=True)
|
136
|
2
|
ax_.tick_params(labelsize=xt_labelsize)
|
137
|
2
|
ax_.set_xlabel("Quantile", fontsize=ax_labelsize, wrap=True)
|
138
|
2
|
ax_.set_ylabel(
|
139
|
|
r"Value $\pm$ MCSE for quantiles" if errorbar else "MCSE for quantiles",
|
140
|
|
fontsize=ax_labelsize,
|
141
|
|
wrap=True,
|
142
|
|
)
|
143
|
2
|
ax_.set_xlim(0, 1)
|
144
|
2
|
if rug:
|
145
|
2
|
ax_.yaxis.get_major_locator().set_params(nbins="auto", steps=[1, 2, 5, 10])
|
146
|
2
|
y_min, y_max = ax_.get_ylim()
|
147
|
2
|
yticks = ax_.get_yticks()
|
148
|
2
|
yticks = yticks[(yticks >= y_min) & (yticks < y_max)]
|
149
|
2
|
ax_.set_yticks(yticks)
|
150
|
2
|
ax_.set_yticklabels(["{:.3g}".format(ytick) for ytick in yticks])
|
151
|
2
|
elif not errorbar:
|
152
|
2
|
ax_.set_ylim(bottom=0)
|
153
|
|
|
154
|
2
|
if backend_show(show):
|
155
|
0
|
plt.show()
|
156
|
|
|
157
|
2
|
return ax
|