No flags found
Use flags to group coverage reports by test type, project and/or folders.
Then setup custom commit statuses and notifications for each flag.
e.g., #unittest #integration
#production #enterprise
#frontend #backend
b458349
... +0 ...
9c3a89a
Use flags to group coverage reports by test type, project and/or folders.
Then setup custom commit statuses and notifications for each flag.
e.g., #unittest #integration
#production #enterprise
#frontend #backend
257 | 257 | :predictions_constant_data => predictions_constant_data, |
|
258 | 258 | ] |
|
259 | 259 | group_data === nothing && continue |
|
260 | - | group_dict = convert(Dict, group_data) |
|
261 | 260 | group_dataset = |
|
262 | - | convert_to_constant_dataset(group_dict; library = library, kwargs...) |
|
261 | + | convert_to_constant_dataset(group_data; library = library, kwargs...) |
|
263 | 262 | concat!(all_idata, InferenceData(; group => group_dataset)) |
|
264 | 263 | end |
|
265 | 264 |
28 | 28 | end |
|
29 | 29 | end |
|
30 | 30 | ||
31 | - | Dataset(; kwargs...) = xarray.Dataset(; kwargs...) |
|
31 | + | Dataset(; kwargs...) = Dataset(xarray.Dataset(; kwargs...)) |
|
32 | 32 | @inline Dataset(data::Dataset) = data |
|
33 | 33 | ||
34 | 34 | @inline PyObject(data::Dataset) = getfield(data, :o) |
116 | 116 | library = nothing, |
|
117 | 117 | attrs = nothing, |
|
118 | 118 | ) |
|
119 | - | obj = convert(Dict, obj) |
|
120 | 119 | base = arviz.data.base |
|
121 | - | coords = coords === nothing ? Dict{String,Vector}() : coords |
|
122 | - | dims = dims === nothing ? Dict{String,Vector{String}}() : dims |
|
123 | 120 | ||
124 | - | data = Dict{String,Any}() |
|
121 | + | obj = _asstringkeydict(obj) |
|
122 | + | coords = _asstringkeydict(coords) |
|
123 | + | dims = _asstringkeydict(dims) |
|
124 | + | attrs = _asstringkeydict(attrs) |
|
125 | + | ||
126 | + | data = Dict{String,PyObject}() |
|
125 | 127 | for (key, vals) in obj |
|
126 | 128 | vals = _asarray(vals) |
|
127 | 129 | val_dims = get(dims, key, nothing) |
|
128 | 130 | (val_dims, val_coords) = |
|
129 | 131 | base.generate_dims_coords(size(vals), key; dims = val_dims, coords = coords) |
|
130 | - | data[string(key)] = xarray.DataArray(vals; dims = val_dims, coords = val_coords) |
|
132 | + | data[key] = xarray.DataArray(vals; dims = val_dims, coords = val_coords) |
|
131 | 133 | end |
|
132 | 134 | ||
133 | 135 | default_attrs = base.make_attrs() |
|
134 | 136 | if library !== nothing |
|
135 | 137 | default_attrs = merge(default_attrs, Dict("inference_library" => string(library))) |
|
136 | 138 | end |
|
137 | - | attrs = attrs === nothing ? default_attrs : merge(default_attrs, attrs) |
|
139 | + | attrs = merge(default_attrs, attrs) |
|
138 | 140 | return Dataset(data_vars = data, coords = coords, attrs = attrs) |
|
139 | 141 | end |
|
140 | 142 |
175 | 175 | @inline _asarray(x) = [x] |
|
176 | 176 | @inline _asarray(x::AbstractArray) = x |
|
177 | 177 | ||
178 | + | _asstringkeydict(x) = Dict(String(k) => v for (k, v) in pairs(x)) |
|
179 | + | _asstringkeydict(x::Dict{String}) = x |
|
180 | + | _asstringkeydict(::Nothing) = Dict{String,Any}() |
|
181 | + | ||
178 | 182 | function enforce_stat_types(dict) |
|
179 | 183 | return Dict(k => get(sample_stats_types, k, eltype(v)).(v) for (k, v) in dict) |
|
180 | 184 | end |
Files | Coverage |
---|---|
src | 0.07% 88.13% |
Project Totals (13 files) | 88.13% |
9c3a89a
b458349