1
|
|
/*
|
2
|
|
*******************************************************************************
|
3
|
|
\file pri.c
|
4
|
|
\brief Prime numbers
|
5
|
|
\project bee2 [cryptographic library]
|
6
|
|
\author (C) Sergey Agievich [agievich@{bsu.by|gmail.com}]
|
7
|
|
\created 2012.08.13
|
8
|
|
\version 2016.07.15
|
9
|
|
\license This program is released under the GNU General Public License
|
10
|
|
version 3. See Copyright Notices in bee2/info.h.
|
11
|
|
*******************************************************************************
|
12
|
|
*/
|
13
|
|
|
14
|
|
#include "bee2/core/mem.h"
|
15
|
|
#include "bee2/core/prng.h"
|
16
|
|
#include "bee2/core/util.h"
|
17
|
|
#include "bee2/core/word.h"
|
18
|
|
#include "bee2/math/pri.h"
|
19
|
|
#include "bee2/math/ww.h"
|
20
|
|
#include "bee2/math/zm.h"
|
21
|
|
|
22
|
|
/*
|
23
|
|
*******************************************************************************
|
24
|
|
Факторная база: первые 1024 нечетных простых
|
25
|
|
|
26
|
|
Построены в Mathematica:
|
27
|
|
\code
|
28
|
|
n = 1024;
|
29
|
|
Table[Prime[i], {i, 2, n + 1}]
|
30
|
|
\endcode
|
31
|
|
*******************************************************************************
|
32
|
|
*/
|
33
|
|
|
34
|
|
static const word _base[] =
|
35
|
|
{
|
36
|
|
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
|
37
|
|
73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151,
|
38
|
|
157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233,
|
39
|
|
239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317,
|
40
|
|
331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419,
|
41
|
|
421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503,
|
42
|
|
509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607,
|
43
|
|
613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701,
|
44
|
|
709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811,
|
45
|
|
821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911,
|
46
|
|
919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013,
|
47
|
|
1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091,
|
48
|
|
1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181,
|
49
|
|
1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277,
|
50
|
|
1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361,
|
51
|
|
1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451,
|
52
|
|
1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531,
|
53
|
|
1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609,
|
54
|
|
1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699,
|
55
|
|
1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789,
|
56
|
|
1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889,
|
57
|
|
1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997,
|
58
|
|
1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083,
|
59
|
|
2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161,
|
60
|
|
2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273,
|
61
|
|
2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357,
|
62
|
|
2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441,
|
63
|
|
2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551,
|
64
|
|
2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663,
|
65
|
|
2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729,
|
66
|
|
2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819,
|
67
|
|
2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917,
|
68
|
|
2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023,
|
69
|
|
3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137,
|
70
|
|
3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251,
|
71
|
|
3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331,
|
72
|
|
3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449,
|
73
|
|
3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533,
|
74
|
|
3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617,
|
75
|
|
3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709,
|
76
|
|
3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821,
|
77
|
|
3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917,
|
78
|
|
3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013,
|
79
|
|
4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111,
|
80
|
|
4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219,
|
81
|
|
4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297,
|
82
|
|
4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423,
|
83
|
|
4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519,
|
84
|
|
4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639,
|
85
|
|
4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729,
|
86
|
|
4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831,
|
87
|
|
4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951,
|
88
|
|
4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023,
|
89
|
|
5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147,
|
90
|
|
5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261,
|
91
|
|
5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387,
|
92
|
|
5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471,
|
93
|
|
5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563,
|
94
|
|
5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659,
|
95
|
|
5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779,
|
96
|
|
5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857,
|
97
|
|
5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981,
|
98
|
|
5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089,
|
99
|
|
6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199,
|
100
|
|
6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287,
|
101
|
|
6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367,
|
102
|
|
6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491,
|
103
|
|
6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607,
|
104
|
|
6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709,
|
105
|
|
6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827,
|
106
|
|
6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917,
|
107
|
|
6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013,
|
108
|
|
7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129,
|
109
|
|
7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243,
|
110
|
|
7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369,
|
111
|
|
7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499,
|
112
|
|
7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577,
|
113
|
|
7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681,
|
114
|
|
7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789,
|
115
|
|
7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901,
|
116
|
|
7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, 8011, 8017,
|
117
|
|
8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123,
|
118
|
|
8147, 8161, 8167,
|
119
|
|
};
|
120
|
|
|
121
|
1
|
size_t priBaseSize()
|
122
|
|
{
|
123
|
1
|
return COUNT_OF(_base);
|
124
|
|
}
|
125
|
|
|
126
|
1
|
word priBasePrime(size_t i)
|
127
|
|
{
|
128
|
1
|
ASSERT(i < priBaseSize());
|
129
|
1
|
return _base[i];
|
130
|
|
}
|
131
|
|
|
132
|
|
/*
|
133
|
|
*******************************************************************************
|
134
|
|
Произведения последовательных простых из факторной базы: множители
|
135
|
|
накапливаются до тех пор, пока произведение помещается в машинное слово.
|
136
|
|
Тривиальные произведения из одного множителя не фиксируются.
|
137
|
|
|
138
|
|
Построены в Mathematica:
|
139
|
|
\code
|
140
|
|
n = 1024;
|
141
|
|
w = B_PER_W;
|
142
|
|
prods = {};
|
143
|
|
For[i = 2, i <= n + 1,
|
144
|
|
For[p = 1; l = 0,
|
145
|
|
i + l <= n + 1 && p * Prime[i + ++l] < 2^w,
|
146
|
|
p *= Prime[i + l]];
|
147
|
|
i += l;
|
148
|
|
If[l > 1, AppendTo[prods, {p, l}]
|
149
|
|
]
|
150
|
|
prods
|
151
|
|
\endcode
|
152
|
|
*******************************************************************************
|
153
|
|
*/
|
154
|
|
|
155
|
|
typedef struct pri_prod_t
|
156
|
|
{
|
157
|
|
word prod; /*< произведение простых из факторной базы */
|
158
|
|
size_t num; /*< количество множителей */
|
159
|
|
} pri_prod_t;
|
160
|
|
|
161
|
|
static const pri_prod_t _prods[] =
|
162
|
|
{
|
163
|
|
#if (B_PER_W == 16)
|
164
|
|
{15015u, 5}, {7429u, 3}, {33263u, 3}, {1763u, 2}, {2491u, 2},
|
165
|
|
{3599u, 2}, {4757u, 2}, {5767u, 2}, {7387u, 2}, {9797u, 2}, {11021u, 2},
|
166
|
|
{12317u, 2}, {16637u, 2}, {19043u, 2}, {22499u, 2}, {25591u, 2},
|
167
|
|
{28891u, 2}, {32399u, 2}, {36863u, 2}, {39203u, 2}, {47053u, 2},
|
168
|
|
{51983u, 2}, {55687u, 2}, {60491u, 2},
|
169
|
|
#elif (B_PER_W == 32)
|
170
|
|
{3234846615u, 9}, {95041567u, 5}, {907383479u, 5}, {4132280413u, 5},
|
171
|
|
{121330189u, 4}, {257557397u, 4}, {490995677u, 4}, {842952707u, 4},
|
172
|
|
{1314423991u, 4}, {2125525169u, 4}, {3073309843u, 4}, {16965341u, 3},
|
173
|
|
{20193023u, 3}, {23300239u, 3}, {29884301u, 3}, {35360399u, 3},
|
174
|
|
{42749359u, 3}, {49143869u, 3}, {56466073u, 3}, {65111573u, 3},
|
175
|
|
{76027969u, 3}, {84208541u, 3}, {94593973u, 3}, {103569859u, 3},
|
176
|
|
{119319383u, 3}, {133390067u, 3}, {154769821u, 3}, {178433279u, 3},
|
177
|
|
{193397129u, 3}, {213479407u, 3}, {229580147u, 3}, {250367549u, 3},
|
178
|
|
{271661713u, 3}, {293158127u, 3}, {319512181u, 3}, {357349471u, 3},
|
179
|
|
{393806449u, 3}, {422400701u, 3}, {452366557u, 3}, {507436351u, 3},
|
180
|
|
{547978913u, 3}, {575204137u, 3}, {627947039u, 3}, {666785731u, 3},
|
181
|
|
{710381447u, 3}, {777767161u, 3}, {834985999u, 3}, {894826021u, 3},
|
182
|
|
{951747481u, 3}, {1019050649u, 3}, {1072651369u, 3}, {1125878063u, 3},
|
183
|
|
{1185362993u, 3}, {1267745273u, 3}, {1322520163u, 3}, {1391119619u, 3},
|
184
|
|
{1498299287u, 3}, {1608372013u, 3}, {1700725291u, 3}, {1805418283u, 3},
|
185
|
|
{1871456063u, 3}, {2008071007u, 3}, {2115193573u, 3}, {2178429527u, 3},
|
186
|
|
{2246284699u, 3}, {2385788087u, 3}, {2591986471u, 3}, {2805004793u, 3},
|
187
|
|
{2922149239u, 3}, {3021320083u, 3}, {3118412617u, 3}, {3265932301u, 3},
|
188
|
|
{3332392423u, 3}, {3523218343u, 3}, {3711836171u, 3}, {3837879163u, 3},
|
189
|
|
{3991792529u, 3}, {4139646463u, 3}, {4233155587u, 3}, {2663399u, 2},
|
190
|
|
{2755591u, 2}, {2782223u, 2}, {2873021u, 2}, {2903591u, 2}, {2965283u, 2},
|
191
|
|
{3017153u, 2}, {3062491u, 2}, {3125743u, 2}, {3186221u, 2}, {3221989u, 2},
|
192
|
|
{3301453u, 2}, {3381857u, 2}, {3474487u, 2}, {3504383u, 2}, {3526883u, 2},
|
193
|
|
{3590989u, 2}, {3648091u, 2}, {3732623u, 2}, {3802499u, 2}, {3904567u, 2},
|
194
|
|
{3960091u, 2}, {3992003u, 2}, {4028033u, 2}, {4088459u, 2}, {4137131u, 2},
|
195
|
|
{4235339u, 2}, {4305589u, 2}, {4347221u, 2}, {4384811u, 2}, {4460543u, 2},
|
196
|
|
{4536899u, 2}, {4575317u, 2}, {4613879u, 2}, {4708819u, 2}, {4862021u, 2},
|
197
|
|
{4915073u, 2}, {5008643u, 2}, {5048993u, 2}, {5143823u, 2}, {5184713u, 2},
|
198
|
|
{5244091u, 2}, {5303773u, 2}, {5391563u, 2}, {5475599u, 2}, {5517797u, 2},
|
199
|
|
{5588447u, 2}, {5659637u, 2}, {5692987u, 2}, {5740807u, 2}, {5827387u, 2},
|
200
|
|
{5904851u, 2}, {5973127u, 2}, {6066353u, 2}, {6125621u, 2}, {6310063u, 2},
|
201
|
|
{6426209u, 2}, {6482107u, 2}, {6522907u, 2}, {6682189u, 2}, {6765137u, 2},
|
202
|
|
{6859157u, 2}, {6969551u, 2}, {7064963u, 2}, {7112873u, 2}, {7182391u, 2},
|
203
|
|
{7225343u, 2}, {7268407u, 2}, {7338677u, 2}, {7376647u, 2}, {7452899u, 2},
|
204
|
|
{7535009u, 2}, {7617551u, 2}, {7745053u, 2}, {7806427u, 2}, {7851203u, 2},
|
205
|
|
{7986227u, 2}, {8065591u, 2}, {8145307u, 2}, {8236819u, 2}, {8363639u, 2},
|
206
|
|
{8444827u, 2}, {8538059u, 2}, {8678867u, 2}, {8761591u, 2}, {8820899u, 2},
|
207
|
|
{8999999u, 2}, {9090209u, 2}, {9180851u, 2}, {9272009u, 2}, {9388087u, 2},
|
208
|
|
{9492557u, 2}, {9603701u, 2}, {9734399u, 2}, {9922331u, 2}, {10036223u, 2},
|
209
|
|
{10137847u, 2}, {10220773u, 2}, {10323353u, 2}, {10400609u, 2},
|
210
|
|
{10575503u, 2}, {10614563u, 2}, {10791029u, 2}, {10916407u, 2},
|
211
|
|
{10995847u, 2}, {11062267u, 2}, {11135533u, 2}, {11242573u, 2},
|
212
|
|
{11329931u, 2}, {11431097u, 2}, {11553137u, 2}, {11716829u, 2},
|
213
|
|
{11923193u, 2}, {11985443u, 2}, {12027023u, 2}, {12215009u, 2},
|
214
|
|
{12348187u, 2}, {12446783u, 2}, {12503287u, 2}, {12559927u, 2},
|
215
|
|
{12659363u, 2}, {12787751u, 2}, {12873719u, 2}, {13032091u, 2},
|
216
|
|
{13104391u, 2}, {13205947u, 2}, {13329737u, 2}, {13483583u, 2},
|
217
|
|
{13571807u, 2}, {13682597u, 2}, {13793771u, 2}, {13912891u, 2},
|
218
|
|
{14062379u, 2}, {14197823u, 2}, {14333747u, 2}, {14439991u, 2},
|
219
|
|
{14607683u, 2}, {14745551u, 2}, {14837903u, 2}, {14976851u, 2},
|
220
|
|
{15093209u, 2}, {15280277u, 2}, {15350723u, 2}, {15413467u, 2},
|
221
|
|
{15499933u, 2}, {15657749u, 2}, {15959989u, 2}, {16040021u, 2},
|
222
|
|
{16128247u, 2}, {16192567u, 2}, {16402499u, 2}, {16524161u, 2},
|
223
|
|
{16687189u, 2}, {16777207u, 2}, {16966097u, 2}, {17065157u, 2},
|
224
|
|
{17189267u, 2}, {17288963u, 2}, {17547577u, 2}, {17757787u, 2},
|
225
|
|
{17842151u, 2}, {17943671u, 2}, {18045479u, 2}, {18147599u, 2},
|
226
|
|
{18249983u, 2}, {18369787u, 2}, {18593119u, 2}, {18818243u, 2},
|
227
|
|
{18948593u, 2}, {19079399u, 2}, {19307227u, 2}, {19492189u, 2},
|
228
|
|
{19642543u, 2}, {19793597u, 2}, {19891591u, 2}, {20088323u, 2},
|
229
|
|
{20249951u, 2}, {20385221u, 2}, {20439437u, 2}, {20684303u, 2},
|
230
|
|
{20830087u, 2}, {21040553u, 2}, {21159991u, 2}, {21427577u, 2},
|
231
|
|
{21538877u, 2}, {21622499u, 2}, {21715591u, 2}, {21864967u, 2},
|
232
|
|
{22061773u, 2}, {22297283u, 2}, {22382357u, 2}, {22610009u, 2},
|
233
|
|
{22896221u, 2}, {22953677u, 2}, {23039999u, 2}, {23184221u, 2},
|
234
|
|
{23483491u, 2}, {23755867u, 2}, {23970767u, 2}, {24147371u, 2},
|
235
|
|
{24324623u, 2}, {24403591u, 2}, {24542107u, 2}, {24681023u, 2},
|
236
|
|
{24800351u, 2}, {24960007u, 2}, {25060027u, 2}, {25160231u, 2},
|
237
|
|
{25310897u, 2}, {25553009u, 2}, {25796237u, 2}, {25938613u, 2},
|
238
|
|
{26050807u, 2}, {26173447u, 2}, {26522491u, 2}, {26718557u, 2},
|
239
|
|
{26873831u, 2}, {27071173u, 2}, {27342437u, 2}, {27405221u, 2},
|
240
|
|
{27741253u, 2}, {27878399u, 2}, {28089991u, 2}, {28259807u, 2},
|
241
|
|
{28515551u, 2}, {28793731u, 2}, {29052091u, 2}, {29192393u, 2},
|
242
|
|
{29322221u, 2}, {29430589u, 2}, {29582717u, 2}, {29658907u, 2},
|
243
|
|
{29964667u, 2}, {30041357u, 2}, {30272003u, 2}, {30393133u, 2},
|
244
|
|
{30514567u, 2}, {30735767u, 2}, {30980347u, 2}, {31102913u, 2},
|
245
|
|
{31438193u, 2}, {31809599u, 2}, {31911197u, 2}, {31979021u, 2},
|
246
|
|
{32080871u, 2}, {32330587u, 2}, {32455793u, 2}, {32649787u, 2},
|
247
|
|
{32936117u, 2}, {33016507u, 2}, {33419957u, 2}, {33593591u, 2},
|
248
|
|
{33756091u, 2}, {33918967u, 2}, {34117277u, 2}, {34222499u, 2},
|
249
|
|
{34327877u, 2}, {34433423u, 2}, {34574399u, 2}, {34809991u, 2},
|
250
|
|
{35105621u, 2}, {35354867u, 2}, {35808247u, 2}, {36108077u, 2},
|
251
|
|
{36397073u, 2}, {36542021u, 2}, {36723551u, 2}, {36917767u, 2},
|
252
|
|
{37088099u, 2}, {37295413u, 2}, {37527851u, 2}, {37675019u, 2},
|
253
|
|
{37908613u, 2}, {38254081u, 2}, {38452397u, 2}, {38613787u, 2},
|
254
|
|
{38750609u, 2}, {39087479u, 2}, {39262747u, 2}, {39363067u, 2},
|
255
|
|
{39601813u, 2}, {39765611u, 2}, {39942391u, 2}, {40106873u, 2},
|
256
|
|
{40297079u, 2}, {40449599u, 2}, {40576891u, 2}, {40755431u, 2},
|
257
|
|
{41075137u, 2}, {41447723u, 2}, {41731519u, 2}, {41951513u, 2},
|
258
|
|
{42327811u, 2}, {42745363u, 2}, {42928703u, 2}, {43112347u, 2},
|
259
|
|
{43217467u, 2}, {43428019u, 2}, {43731733u, 2}, {44155961u, 2},
|
260
|
|
{44355599u, 2}, {44568967u, 2}, {44756099u, 2}, {44916803u, 2},
|
261
|
|
{45077771u, 2}, {45360221u, 2}, {45724643u, 2}, {45968399u, 2},
|
262
|
|
{46131263u, 2}, {46416869u, 2}, {46621583u, 2}, {46744553u, 2},
|
263
|
|
{47059591u, 2}, {47196899u, 2}, {47485817u, 2}, {47734277u, 2},
|
264
|
|
{48052399u, 2}, {48358091u, 2}, {48497287u, 2}, {48636667u, 2},
|
265
|
|
{48818153u, 2}, {48985997u, 2}, {49224247u, 2}, {49463053u, 2},
|
266
|
|
{49702451u, 2}, {50041451u, 2}, {50495227u, 2}, {50751367u, 2},
|
267
|
|
{50979479u, 2}, {51380143u, 2}, {51696091u, 2}, {51969677u, 2},
|
268
|
|
{52070647u, 2}, {52316273u, 2}, {52490021u, 2}, {52823599u, 2},
|
269
|
|
{53319179u, 2}, {53509189u, 2}, {53758223u, 2}, {54022499u, 2},
|
270
|
|
{54479017u, 2}, {54967387u, 2}, {55383283u, 2}, {55621763u, 2},
|
271
|
|
{55935437u, 2}, {56070143u, 2}, {56294993u, 2}, {56550391u, 2},
|
272
|
|
{56746073u, 2}, {56911927u, 2}, {57062891u, 2}, {57259453u, 2},
|
273
|
|
{57456391u, 2}, {57608099u, 2}, {57836021u, 2}, {58216819u, 2},
|
274
|
|
{58461307u, 2}, {58844237u, 2}, {59043847u, 2}, {59213009u, 2},
|
275
|
|
{59444051u, 2}, {59675621u, 2}, {60015973u, 2}, {60186563u, 2},
|
276
|
|
{60699677u, 2}, {61152391u, 2}, {61387189u, 2}, {61779551u, 2},
|
277
|
|
{62015621u, 2}, {62110157u, 2}, {62473207u, 2}, {62773913u, 2},
|
278
|
|
{62964221u, 2}, {63202499u, 2}, {63648259u, 2}, {64160099u, 2},
|
279
|
|
{64448663u, 2}, {64899127u, 2}, {65205589u, 2}, {65415743u, 2},
|
280
|
|
{65561393u, 2}, {65836987u, 2}, {66178081u, 2}, {66650887u, 2},
|
281
|
|
#else
|
282
|
|
{16294579238595022365u, 15}, {7145393598349078859u, 10},
|
283
|
|
{6408001374760705163u, 9}, {690862709424854779u, 8},
|
284
|
|
{4312024209383942993u, 8}, {71235931512604841u, 7},
|
285
|
|
{192878245514479103u, 7}, {542676746453092519u, 7},
|
286
|
|
{1230544604996048471u, 7}, {2618501576975440661u, 7},
|
287
|
|
{4771180125133726009u, 7}, {9247077179230889629u, 7},
|
288
|
|
{32156968791364271u, 6}, {46627620659631719u, 6}, {64265583549260393u, 6},
|
289
|
|
{88516552714582021u, 6}, {131585967012906751u, 6},
|
290
|
|
{182675399263485151u, 6}, {261171077386532413u, 6},
|
291
|
|
{346060227726080771u, 6}, {448604664249794309u, 6},
|
292
|
|
{621993868801161359u, 6}, {813835565706097817u, 6},
|
293
|
|
{1050677302683430441u, 6}, {1294398862104002783u, 6},
|
294
|
|
{1615816556891330179u, 6}, {1993926996710486603u, 6},
|
295
|
|
{2626074105497143999u, 6}, {3280430033433832817u, 6},
|
296
|
|
{4076110663011485663u, 6}, {4782075577404875363u, 6},
|
297
|
|
{5906302864496324923u, 6}, {7899206880638488339u, 6},
|
298
|
|
{9178333502078117453u, 6}, {10680076322389870367u, 6},
|
299
|
|
{12622882367374918799u, 6}, {14897925470078818423u, 6},
|
300
|
|
{17264316336968551717u, 6}, {11896905306684389u, 5},
|
301
|
|
{13580761294555417u, 5}, {15289931661301991u, 5},
|
302
|
|
{17067874133764579u, 5}, {19008757261780379u, 5},
|
303
|
|
{21984658219193689u, 5}, {23721541361298551u, 5},
|
304
|
|
{26539432378378657u, 5}, {30167221680049747u, 5},
|
305
|
|
{32433198277139683u, 5}, {35517402656173043u, 5},
|
306
|
|
{39100537712055041u, 5}, {42477532426853543u, 5},
|
307
|
|
{45618621452253523u, 5}, {52071972962579407u, 5},
|
308
|
|
{57329264013213233u, 5}, {61692083285823527u, 5},
|
309
|
|
{66885169838978461u, 5}, {72186879569637319u, 5},
|
310
|
|
{77103033998665567u, 5}, {82549234838454463u, 5},
|
311
|
|
{89609394623390063u, 5}, {100441814079170659u, 5},
|
312
|
|
{109045745121501371u, 5}, {120230527473437819u, 5},
|
313
|
|
{131125107904515419u, 5}, {138612182127286823u, 5},
|
314
|
|
{144712752835963307u, 5}, {152692680370726429u, 5},
|
315
|
|
{164664356404541573u, 5}, {175376065798883557u, 5},
|
316
|
|
{187958301132741257u, 5}, {203342285718459187u, 5},
|
317
|
|
{219115706321995421u, 5}, {235226887496676263u, 5},
|
318
|
|
{253789253193479219u, 5}, {271717583502831491u, 5},
|
319
|
|
{293266389497362763u, 5}, {321821627692439603u, 5},
|
320
|
|
{339856237957830049u, 5}, {362469273063260281u, 5},
|
321
|
|
{390268963330916339u, 5}, {408848490015359209u, 5},
|
322
|
|
{429644565036857699u, 5}, {458755816747679897u, 5},
|
323
|
|
{495450768525623033u, 5}, {523240424009891327u, 5},
|
324
|
|
{551070603968128061u, 5}, {574205321266688311u, 5},
|
325
|
|
{606829434176923693u, 5}, {637763212653336997u, 5},
|
326
|
|
{676538378976146257u, 5}, {710263471119657661u, 5},
|
327
|
|
{754496879875465343u, 5}, {800075738315885429u, 5},
|
328
|
|
{845197573085733239u, 5}, {894146362391888161u, 5},
|
329
|
|
{930105507041885771u, 5}, {985345849616172623u, 5},
|
330
|
|
{1040222328124784927u, 5}, {1091468150538871153u, 5},
|
331
|
|
{1150933747479716653u, 5}, {1210604027868555713u, 5},
|
332
|
|
{1277530693373553361u, 5}, {1350088100087645657u, 5},
|
333
|
|
{1398676120233167591u, 5}, {1459450139327525269u, 5},
|
334
|
|
{1555755169940697937u, 5}, {1645735334920325819u, 5},
|
335
|
|
{1732866357938791147u, 5}, {1815492864312158099u, 5},
|
336
|
|
{1894564116319543619u, 5}, {1993720023757886939u, 5},
|
337
|
|
{2103356633892712673u, 5}, {2180099035358103487u, 5},
|
338
|
|
{2277315690161244011u, 5}, {2390146379836558999u, 5},
|
339
|
|
{2522126262040806983u, 5}, {2613887383383648311u, 5},
|
340
|
|
{2795412145600606001u, 5}, {2919958494381348367u, 5},
|
341
|
|
{3012266980379247553u, 5}, {3119360766859522543u, 5},
|
342
|
|
{3216618305468232557u, 5}, {3385071039891962579u, 5},
|
343
|
|
{3509427475807939163u, 5}, {3700008514672760651u, 5},
|
344
|
|
{3873423910591589033u, 5}, {4050200067084600439u, 5},
|
345
|
|
{4233429923647833421u, 5}, {4472862244562412787u, 5},
|
346
|
|
{4638587045132438407u, 5}, {4765110805097342489u, 5},
|
347
|
|
{4951886102290887619u, 5}, {5103665412856065733u, 5},
|
348
|
|
{5306636943410213377u, 5}, {5581202660702121667u, 5},
|
349
|
|
{5774946339890457283u, 5}, {5948565823654343479u, 5},
|
350
|
|
{6175776426345604697u, 5}, {6454381412132929663u, 5},
|
351
|
|
{6685489970462824483u, 5}, {6864273057227912189u, 5},
|
352
|
|
{7020466399135670969u, 5}, {7326535375987923521u, 5},
|
353
|
|
{7795297680723533551u, 5}, {8101368883577379127u, 5},
|
354
|
|
{8353548973662446233u, 5}, {8642941459163335097u, 5},
|
355
|
|
{8989536585105548947u, 5}, {9281597047973093449u, 5},
|
356
|
|
{9623989560555822323u, 5}, {9884958654427267811u, 5},
|
357
|
|
{10161260209201654649u, 5}, {10427299413974952277u, 5},
|
358
|
|
{10759022378261015069u, 5}, {11290266633494854903u, 5},
|
359
|
|
{11852839900193264543u, 5}, {12209591760462366097u, 5},
|
360
|
|
{12604874462407914499u, 5}, {13152204116524238149u, 5},
|
361
|
|
{13487108616207513373u, 5}, {13935742926215786057u, 5},
|
362
|
|
{14426307807825845411u, 5}, {14869398407236523377u, 5},
|
363
|
|
{15287602532539390847u, 5}, {15824557271701228177u, 5},
|
364
|
|
{16348641675671844607u, 5}, {16684838939207505557u, 5},
|
365
|
|
{17148166373867218913u, 5}, {17832011695956938489u, 5},
|
366
|
|
{2587278248197793u, 4}, {2656152548121013u, 4}, {2706094705771019u, 4},
|
367
|
|
{2746082268411733u, 4}, {2816510930505221u, 4}, {2876558914811147u, 4},
|
368
|
|
{2943092641403483u, 4}, {3044274349991521u, 4}, {3111227620115431u, 4},
|
369
|
|
{3156468307693999u, 4}, {3209012615864543u, 4}, {3247559087000957u, 4},
|
370
|
|
{3289921520014123u, 4}, {3331823223534079u, 4}, {3403431328122433u, 4},
|
371
|
|
{3474390126259739u, 4}, {3519861126859459u, 4}, {3581490458694233u, 4},
|
372
|
|
{3653304933840151u, 4}, {3753973384118899u, 4}, {3831297220366171u, 4},
|
373
|
|
{3880220695063499u, 4}, {3952510531166773u, 4}, {4022729025799241u, 4},
|
374
|
|
{4135032598497637u, 4}, {4231785801620803u, 4}, {4288747235209999u, 4},
|
375
|
|
{4356965458481947u, 4}, {66650887u, 2},
|
376
|
|
#endif
|
377
|
|
};
|
378
|
|
|
379
|
1
|
void priBaseMod(word mods[], const word a[], size_t n, size_t count)
|
380
|
|
{
|
381
|
|
size_t i, j;
|
382
|
|
// pre
|
383
|
1
|
ASSERT(wwIsValid(a, n));
|
384
|
1
|
ASSERT(count <= priBaseSize());
|
385
|
1
|
ASSERT(wwIsValid(mods, count));
|
386
|
|
// пробегаем произведения простых из факторной базы
|
387
|
1
|
for (i = j = 0; i < count && j < COUNT_OF(_prods); ++j)
|
388
|
|
{
|
389
|
1
|
size_t num = _prods[j].num;
|
390
|
|
// t <- a mod _base[i] * ... * _base[i + num - 1]
|
391
|
1
|
word t = zzModW(a, n, _prods[j].prod);
|
392
|
|
// mods[i] <- t mod _base[i]
|
393
|
1
|
while (num-- && i < count)
|
394
|
1
|
mods[i] = t % _base[i], ++i;
|
395
|
|
}
|
396
|
|
// пробегаем оставшиеся простые из факторной базы
|
397
|
1
|
for (; i < count; ++i)
|
398
|
0
|
mods[i] = zzModW(a, n, _base[i]);
|
399
|
|
}
|
400
|
|
|
401
|
|
/*
|
402
|
|
*******************************************************************************
|
403
|
|
Использование факторной базы
|
404
|
|
|
405
|
|
\todo Алгоритм Бернштейна выделения гладкой части
|
406
|
|
[http://cr.yp.to/factorization/smoothparts-20040510.pdf]:
|
407
|
|
z <- p1 p2 .... pm \mod a
|
408
|
|
y <- z^{2^e} \mod a (e --- минимальное натуральное т.ч. 3^{2^e} > a)
|
409
|
|
return \gcd(x, y)
|
410
|
|
*******************************************************************************
|
411
|
|
*/
|
412
|
|
|
413
|
1
|
bool_t priIsSieved(const word a[], size_t n, size_t base_count, void* stack)
|
414
|
|
{
|
415
|
|
// переменные в stack
|
416
|
|
word* mods;
|
417
|
|
// pre
|
418
|
1
|
ASSERT(base_count <= priBaseSize());
|
419
|
|
// четное?
|
420
|
1
|
n = wwWordSize(a, n);
|
421
|
1
|
if (zzIsEven(a, n))
|
422
|
0
|
return FALSE;
|
423
|
|
// малое a?
|
424
|
1
|
if (n == 1)
|
425
|
|
// при необходимости скоррректировать факторную базу
|
426
|
0
|
while (base_count > 0 && priBasePrime(base_count - 1) > a[0])
|
427
|
0
|
--base_count;
|
428
|
|
// раскладка stack
|
429
|
1
|
mods = (word*)stack;
|
430
|
1
|
stack = mods + base_count;
|
431
|
|
// найти остатки
|
432
|
1
|
priBaseMod(mods, a, n, base_count);
|
433
|
|
// есть нулевые остатки?
|
434
|
1
|
while (base_count--)
|
435
|
1
|
if (mods[base_count] == 0)
|
436
|
1
|
return FALSE;
|
437
|
|
// нет
|
438
|
1
|
return TRUE;
|
439
|
|
}
|
440
|
|
|
441
|
1
|
size_t priIsSieved_deep(size_t base_count)
|
442
|
|
{
|
443
|
1
|
return O_OF_W(base_count);
|
444
|
|
}
|
445
|
|
|
446
|
1
|
bool_t priIsSmooth(const word a[], size_t n, size_t base_count, void* stack)
|
447
|
|
{
|
448
|
|
register size_t i;
|
449
|
|
register word mod;
|
450
|
|
// переменные в stack
|
451
|
1
|
word* t = (word*)stack;
|
452
|
1
|
stack = t + n;
|
453
|
|
// pre
|
454
|
1
|
ASSERT(base_count <= priBaseSize());
|
455
|
|
// t <- a
|
456
|
1
|
wwCopy(t, a, n);
|
457
|
|
// разделить t на степень 2
|
458
|
1
|
i = wwLoZeroBits(t, n);
|
459
|
1
|
wwShLo(t, n, i);
|
460
|
1
|
n = wwWordSize(t, n);
|
461
|
1
|
if (wwIsZero(t, n))
|
462
|
|
{
|
463
|
0
|
i = 0;
|
464
|
0
|
return TRUE;
|
465
|
|
}
|
466
|
|
// цикл по простым из факторной базы
|
467
|
1
|
for (i = 0; i < base_count;)
|
468
|
|
{
|
469
|
1
|
mod = _base[i] < WORD_BIT_HALF ?
|
470
|
1
|
zzModW2(t, n, _base[i]) : zzModW(t, n, _base[i]);
|
471
|
|
// делится на простое?
|
472
|
1
|
if (mod == 0)
|
473
|
|
{
|
474
|
1
|
zzDivW(t, t, n, _base[i]);
|
475
|
1
|
n = wwWordSize(t, n);
|
476
|
1
|
if (wwIsZero(t, n))
|
477
|
|
{
|
478
|
0
|
i = 0, mod = 0;
|
479
|
0
|
return TRUE;
|
480
|
|
}
|
481
|
|
}
|
482
|
|
// .. не делится
|
483
|
|
else
|
484
|
1
|
++i;
|
485
|
|
}
|
486
|
1
|
i = 0, mod = 0;
|
487
|
1
|
return FALSE;
|
488
|
|
}
|
489
|
|
|
490
|
1
|
size_t priIsSmooth_deep(size_t n)
|
491
|
|
{
|
492
|
1
|
return O_OF_W(n);
|
493
|
|
}
|
494
|
|
|
495
|
|
/*
|
496
|
|
*******************************************************************************
|
497
|
|
Проверка простоты малых чисел
|
498
|
|
|
499
|
|
Применяется тест Миллера --- Рабина со специально подобранными основаниями.
|
500
|
|
Успешное завершение теста на всех основаниях из списка _base16 гарантирует
|
501
|
|
простоту чисел вплоть до 1373653, из списка _base32 --- вплоть
|
502
|
|
до 4759123141, из списка _base64 --- для всех 64-разрядных чисел.
|
503
|
|
|
504
|
|
Список оснований: http://miller-rabin.appspot.com (список обновляется).
|
505
|
|
|
506
|
|
\todo Проверка на малые делители позволит уменьшить число оснований /
|
507
|
|
сократить время проверки?
|
508
|
|
*******************************************************************************
|
509
|
|
*/
|
510
|
|
|
511
|
|
const word _bases16[] = {2, 3};
|
512
|
|
const word _bases32[] = {2, 7, 61};
|
513
|
|
#if (B_PER_W == 64)
|
514
|
|
const word _bases64[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
|
515
|
|
#endif
|
516
|
|
|
517
|
1
|
bool_t priIsPrimeW(register word a, void* stack)
|
518
|
|
{
|
519
|
|
const word* bases;
|
520
|
|
register word r;
|
521
|
|
register size_t s;
|
522
|
|
register size_t iter;
|
523
|
|
register size_t i;
|
524
|
|
register word base;
|
525
|
|
register dword prod;
|
526
|
|
// маленькое или четное?
|
527
|
1
|
if (a <= 3 || a % 2 == 0)
|
528
|
1
|
return a == 2 || a == 3;
|
529
|
|
// a - 1 = 2^s r (r -- нечетное)
|
530
|
1
|
for (r = a - 1, s = 0; r % 2 == 0; r >>= 1, ++s);
|
531
|
1
|
ASSERT(s > 0 && WORD_BIT_POS(s) * r + 1 == a);
|
532
|
|
// выбираем базис
|
533
|
|
#if (B_PER_W == 16)
|
534
|
|
bases = _bases16, iter = COUNT_OF(_bases16);
|
535
|
|
#elif (B_PER_W == 32)
|
536
|
|
if (a < 1373653)
|
537
|
|
bases = _bases16, iter = COUNT_OF(_bases16);
|
538
|
|
else
|
539
|
|
bases = _bases32, iter = COUNT_OF(_bases32);
|
540
|
|
#elif (B_PER_W == 64)
|
541
|
1
|
if (a < 1373653)
|
542
|
1
|
bases = _bases16, iter = COUNT_OF(_bases16);
|
543
|
0
|
else if (a < 4759123141)
|
544
|
0
|
bases = _bases32, iter = COUNT_OF(_bases32);
|
545
|
|
else
|
546
|
0
|
bases = _bases64, iter = COUNT_OF(_bases64);
|
547
|
|
#endif
|
548
|
|
// итерации
|
549
|
1
|
while (iter--)
|
550
|
|
{
|
551
|
|
// _bases[iter]^r \equiv \pm 1 \mod a?
|
552
|
1
|
base = zzPowerModW(bases[iter], r, a, stack);
|
553
|
1
|
if (base == 1 || base == a - 1)
|
554
|
1
|
continue;
|
555
|
|
// base^{2^i} \equiv - 1\mod a?
|
556
|
1
|
for (i = s - 1; i--;)
|
557
|
|
{
|
558
|
1
|
prod = base;
|
559
|
1
|
prod *= base, base = prod % a;
|
560
|
1
|
if (base == a - 1)
|
561
|
1
|
break;
|
562
|
1
|
if (base == 1)
|
563
|
|
{
|
564
|
0
|
r = base = 0, s = iter = i = 0, prod = 0;
|
565
|
0
|
return FALSE;
|
566
|
|
}
|
567
|
|
}
|
568
|
1
|
if (i == SIZE_MAX)
|
569
|
|
{
|
570
|
1
|
r = base = 0, s = iter = i = 0, prod = 0;
|
571
|
1
|
return FALSE;
|
572
|
|
}
|
573
|
|
}
|
574
|
1
|
r = base = 0, s = iter = i = 0, prod = 0;
|
575
|
1
|
return TRUE;
|
576
|
|
}
|
577
|
|
|
578
|
1
|
size_t priIsPrimeW_deep()
|
579
|
|
{
|
580
|
1
|
return zzPowerModW_deep();
|
581
|
|
}
|
582
|
|
|
583
|
|
/*
|
584
|
|
*******************************************************************************
|
585
|
|
Тест Рабина -- Миллера
|
586
|
|
|
587
|
|
При операциях \mod a может использоваться умножение Монтгомери. При этом
|
588
|
|
случайное основание выбирается отличным от R \mod a, -R \mod a (R = B^n),
|
589
|
|
а получаемые степени сравниваются не с \pm 1 \mod a, а с \pm R \mod a.
|
590
|
|
|
591
|
|
В начале функции проверяется, что a >= 49. Поэтому основание base будет
|
592
|
|
совпадать с \pm R \mod a с вероятностью p < 2/(49 - 1) = 1/24 и число попыток
|
593
|
|
генерации можно ограничить величиной
|
594
|
|
B_PER_IMPOSSLIBLE / log_2(24) < B_PER_IMPOSSLIBLE / 4.5.
|
595
|
|
*******************************************************************************
|
596
|
|
*/
|
597
|
|
|
598
|
1
|
bool_t priRMTest(const word a[], size_t n, size_t iter, void* stack)
|
599
|
|
{
|
600
|
|
register size_t s;
|
601
|
|
register size_t m;
|
602
|
|
register size_t i;
|
603
|
|
// переменные в stack
|
604
|
1
|
word* r = (word*)stack;
|
605
|
1
|
word* base = r + n;
|
606
|
1
|
qr_o* qr = (qr_o*)(base + n);
|
607
|
1
|
octet* combo_state = (octet*)qr + zmCreate_keep(O_OF_W(n));
|
608
|
1
|
stack = combo_state + prngCOMBO_keep();
|
609
|
|
// pre
|
610
|
1
|
ASSERT(wwIsValid(a, n));
|
611
|
|
// нормализация
|
612
|
1
|
n = wwWordSize(a, n);
|
613
|
|
// четное?
|
614
|
1
|
if (zzIsEven(a, n))
|
615
|
0
|
return wwCmpW(a, n, 2) == 0;
|
616
|
|
// маленькое?
|
617
|
1
|
if (n == 1 && a[0] < 49)
|
618
|
1
|
return a[0] != 1 && (a[0] == 3 || a[0] % 3) && (a[0] == 5 || a[0] % 5);
|
619
|
|
// подготовить генератор
|
620
|
1
|
prngCOMBOStart(combo_state, utilNonce32());
|
621
|
|
// создать кольцо
|
622
|
1
|
wwTo(base, O_OF_W(n), a);
|
623
|
1
|
zmCreate(qr, (octet*)base, memNonZeroSize(base, O_OF_W(n)), stack);
|
624
|
|
// a - 1 = r 2^s (r -- нечетное)
|
625
|
1
|
wwCopy(r, a, n);
|
626
|
1
|
zzSubW2(r, n, 1);
|
627
|
1
|
s = wwLoZeroBits(r, n);
|
628
|
1
|
wwShLo(r, n, s);
|
629
|
1
|
m = wwWordSize(r, n);
|
630
|
|
// итерации
|
631
|
1
|
while (iter--)
|
632
|
|
{
|
633
|
|
// base <-R {1, \ldots, a - 1} \ {\pm one}
|
634
|
1
|
i = 0;
|
635
|
|
do
|
636
|
1
|
if (i++ * 45 > B_PER_IMPOSSIBLE * 10 ||
|
637
|
1
|
!zzRandNZMod(base, a, n, prngCOMBOStepR, combo_state))
|
638
|
|
{
|
639
|
0
|
s = m = 0;
|
640
|
0
|
return FALSE;
|
641
|
|
}
|
642
|
1
|
while (wwEq(base, qr->unity, n) || zzIsSumEq(a, base, qr->unity, n));
|
643
|
|
// base <- base^r \mod a
|
644
|
1
|
qrPower(base, base, r, m, qr, stack);
|
645
|
|
// base == \pm one => тест пройден
|
646
|
1
|
if (wwEq(base, qr->unity, n) ||
|
647
|
1
|
zzIsSumEq(a, base, qr->unity, n))
|
648
|
1
|
continue;
|
649
|
|
// base^{2^i} \equiv -1 \mod a?
|
650
|
1
|
for (i = s; i--;)
|
651
|
|
{
|
652
|
1
|
qrSqr(base, base, qr, stack);
|
653
|
1
|
if (wwEq(base, qr->unity, n))
|
654
|
|
{
|
655
|
0
|
s = m = i = 0;
|
656
|
0
|
return FALSE;
|
657
|
|
}
|
658
|
1
|
if (zzIsSumEq(a, base, qr->unity, n))
|
659
|
1
|
break;
|
660
|
|
}
|
661
|
1
|
if (i == SIZE_MAX)
|
662
|
|
{
|
663
|
1
|
s = m = i = 0;
|
664
|
1
|
return FALSE;
|
665
|
|
}
|
666
|
|
}
|
667
|
1
|
s = m = i = 0;
|
668
|
|
// простое
|
669
|
1
|
return TRUE;
|
670
|
|
}
|
671
|
|
|
672
|
1
|
size_t priRMTest_deep(size_t n)
|
673
|
|
{
|
674
|
1
|
size_t qr_deep = zmCreate_deep(O_OF_W(n));
|
675
|
1
|
return O_OF_W(2 * n) + zmCreate_keep(O_OF_W(n)) + prngCOMBO_keep() +
|
676
|
1
|
utilMax(2,
|
677
|
|
qr_deep,
|
678
|
|
qrPower_deep(n, n, qr_deep));
|
679
|
|
}
|
680
|
|
|
681
|
1
|
bool_t priIsPrime(const word a[], size_t n, void* stack)
|
682
|
|
{
|
683
|
1
|
return priRMTest(a, n, (B_PER_IMPOSSIBLE + 1) / 2, stack);
|
684
|
|
}
|
685
|
|
|
686
|
1
|
size_t priIsPrime_deep(size_t n)
|
687
|
|
{
|
688
|
1
|
return priRMTest_deep(n);
|
689
|
|
}
|
690
|
|
|
691
|
|
/*
|
692
|
|
*******************************************************************************
|
693
|
|
Простое Софи Жермен
|
694
|
|
|
695
|
|
q -- нечетное простое => p = 2q + 1 -- простое <=> [теорема Демитко]
|
696
|
|
1) 2^2 \not\equiv 1 \mod p;
|
697
|
|
2) 2^2q \equiv 1 \mod p.
|
698
|
|
*******************************************************************************
|
699
|
|
*/
|
700
|
|
|
701
|
1
|
bool_t priIsSGPrime(const word q[], size_t n, void* stack)
|
702
|
|
{
|
703
|
1
|
size_t no = O_OF_W(n + 1);
|
704
|
|
// переменные в stack
|
705
|
|
word* p;
|
706
|
|
qr_o* qr;
|
707
|
|
// pre
|
708
|
1
|
ASSERT(zzIsOdd(q, n) && wwCmpW(q, n, 1) > 0);
|
709
|
|
// раскладка стек
|
710
|
1
|
p = (word*)stack;
|
711
|
1
|
qr = (qr_o*)(p + n + 1);
|
712
|
1
|
stack = (octet*)qr + zmCreate_keep(no);
|
713
|
|
// p <- 2q + 1
|
714
|
1
|
wwCopy(p, q, n);
|
715
|
1
|
p[n] = 0;
|
716
|
1
|
wwShHi(p, n + 1, 1);
|
717
|
1
|
++p[0];
|
718
|
|
// создать кольцо \mod p
|
719
|
1
|
no = wwOctetSize(p, n + 1);
|
720
|
1
|
wwTo(p, no, p);
|
721
|
1
|
zmCreate(qr, (octet*)p, no, stack);
|
722
|
|
// p <- 4^q (в кольце qr)
|
723
|
1
|
qrAdd(p, qr->unity, qr->unity, qr);
|
724
|
1
|
qrAdd(p, p, p, qr);
|
725
|
1
|
qrPower(p, p, q, n, qr, stack);
|
726
|
|
// 4^q == 1 (в кольце qr)?
|
727
|
1
|
return qrCmp(p, qr->unity, qr) == 0;
|
728
|
|
}
|
729
|
|
|
730
|
1
|
size_t priIsSGPrime_deep(size_t n)
|
731
|
|
{
|
732
|
1
|
const size_t no = O_OF_W(n + 1);
|
733
|
1
|
const size_t qr_deep = zmCreate_deep(no);
|
734
|
1
|
return no + zmCreate_keep(no) +
|
735
|
1
|
utilMax(2,
|
736
|
|
qr_deep,
|
737
|
|
qrPower_deep(n + 1, n, qr_deep));
|
738
|
|
}
|
739
|
|
|
740
|
|
/*
|
741
|
|
*******************************************************************************
|
742
|
|
Следующее простое
|
743
|
|
*******************************************************************************
|
744
|
|
*/
|
745
|
|
|
746
|
1
|
bool_t priNextPrimeW(word p[1], register word a, void* stack)
|
747
|
|
{
|
748
|
|
register size_t l;
|
749
|
|
// p <- a, l <- битовая длина a
|
750
|
1
|
p[0] = a, l = wwBitSize(p, 1);
|
751
|
|
// 0-битовых и 1-битовых простых не существует
|
752
|
1
|
if (l <= 1)
|
753
|
0
|
return FALSE;
|
754
|
|
// сделать p нечетным
|
755
|
1
|
p[0] |= 1;
|
756
|
|
// поиск
|
757
|
1
|
while (!priIsPrimeW(p[0], stack))
|
758
|
|
{
|
759
|
1
|
p[0] += 2;
|
760
|
1
|
if (wwBitSize(p, 1) != l)
|
761
|
|
{
|
762
|
0
|
l = 0;
|
763
|
0
|
return FALSE;
|
764
|
|
}
|
765
|
|
}
|
766
|
1
|
l = 0;
|
767
|
1
|
return TRUE;
|
768
|
|
}
|
769
|
|
|
770
|
1
|
size_t priNextPrimeW_deep()
|
771
|
|
{
|
772
|
1
|
return priIsPrimeW_deep();
|
773
|
|
}
|
774
|
|
|
775
|
1
|
bool_t priNextPrime(word p[], const word a[], size_t n, size_t trials,
|
776
|
|
size_t base_count, size_t iter, void* stack)
|
777
|
|
{
|
778
|
|
size_t l;
|
779
|
|
size_t i;
|
780
|
|
bool_t base_success;
|
781
|
|
// переменные в stack
|
782
|
|
word* mods;
|
783
|
|
// pre
|
784
|
1
|
ASSERT(wwIsSameOrDisjoint(a, p, n));
|
785
|
1
|
ASSERT(base_count <= priBaseSize());
|
786
|
|
// раскладка stack
|
787
|
1
|
mods = (word*)stack;
|
788
|
1
|
stack = mods + base_count;
|
789
|
|
// l <- битовая длина a
|
790
|
1
|
l = wwBitSize(a, n);
|
791
|
|
// 0-битовых и 1-битовых простых не существует
|
792
|
1
|
if (l <= 1)
|
793
|
0
|
return FALSE;
|
794
|
|
// p <- минимальное нечетное >= a
|
795
|
1
|
wwCopy(p, a, n);
|
796
|
1
|
p[0] |= 1;
|
797
|
|
// малое p?
|
798
|
1
|
if (n == 1)
|
799
|
|
// при необходимости скоррректировать факторную базу
|
800
|
1
|
while (base_count > 0 && priBasePrime(base_count - 1) >= p[0])
|
801
|
0
|
--base_count;
|
802
|
|
// рассчитать остатки от деления на малые простые
|
803
|
1
|
priBaseMod(mods, p, n, base_count);
|
804
|
1
|
for (i = 0, base_success = TRUE; i < base_count; ++i)
|
805
|
1
|
if (mods[i] == 0)
|
806
|
|
{
|
807
|
1
|
base_success = FALSE;
|
808
|
1
|
break;
|
809
|
|
}
|
810
|
|
// попытки
|
811
|
1
|
while (trials == SIZE_MAX || trials--)
|
812
|
|
{
|
813
|
|
// проверка простоты
|
814
|
1
|
if (base_success && priRMTest(p, n, iter, stack))
|
815
|
1
|
return TRUE;
|
816
|
|
// к следующему кандидату
|
817
|
1
|
if (zzAddW2(p, n, 2) || wwBitSize(p, n) > l)
|
818
|
1
|
return FALSE;
|
819
|
1
|
for (i = 0, base_success = TRUE; i < base_count; ++i)
|
820
|
|
{
|
821
|
1
|
if (mods[i] < _base[i] - 2)
|
822
|
1
|
mods[i] += 2;
|
823
|
1
|
else if (mods[i] == _base[i] - 1)
|
824
|
1
|
mods[i] = 1;
|
825
|
|
else
|
826
|
1
|
mods[i] = 0, base_success = FALSE;
|
827
|
|
}
|
828
|
|
}
|
829
|
0
|
return FALSE;
|
830
|
|
}
|
831
|
|
|
832
|
1
|
size_t priNextPrime_deep(size_t n, size_t base_count)
|
833
|
|
{
|
834
|
1
|
return base_count * O_PER_W + priRMTest_deep(n);
|
835
|
|
}
|
836
|
|
|
837
|
|
/*
|
838
|
|
*******************************************************************************
|
839
|
|
Расширение простого
|
840
|
|
|
841
|
|
Теорема Демитко. Если q -- нечетное простое, p = 2qr + 1, где 2r < 4q + 1,
|
842
|
|
и выполнены условия:
|
843
|
|
1) 2^{2qr} \equiv 1 \mod p;
|
844
|
|
2) 2^{2r} \not\equiv 1 \mod p,
|
845
|
|
то p -- простое.
|
846
|
|
|
847
|
|
\remark Если l <= 2 * lq, где lq = bitlen(q), то условие 2r < 4q + 1 будет
|
848
|
|
выполнено:
|
849
|
|
2r = (p - 1) / q < 2^l / (2^{lq - 1}} = 2^{l - lq + 1} <= 2^{lq + 2} < 4q.
|
850
|
|
|
851
|
|
Построение p:
|
852
|
|
1) t <-R {2^{l - 2} + 1,..., 2^{l - 1} - 1};
|
853
|
|
2) t <- t + 2^{l - 1};
|
854
|
|
3) r <- ceil(t / q);
|
855
|
|
4) p <- 2qr + 1;
|
856
|
|
5) если bitlen(p) != l, то вернуться к шагу 1.
|
857
|
|
|
858
|
|
\remark Если t укладывается в m слов, q -- в n слов, то r на шаге 3)
|
859
|
|
укладывается в m - n + 1 слов. Действительно, максимальное r получается
|
860
|
|
при t = B^m - 1, q = B^{n - 1} и равняется B^{m - n + 1} - 1.
|
861
|
|
*******************************************************************************
|
862
|
|
*/
|
863
|
|
|
864
|
1
|
bool_t priExtendPrime(word p[], size_t l, const word q[], size_t n,
|
865
|
|
size_t trials, size_t base_count, gen_i rng, void* rng_state, void* stack)
|
866
|
|
{
|
867
|
1
|
const size_t m = W_OF_B(l);
|
868
|
1
|
const size_t mo = O_OF_B(l);
|
869
|
|
size_t i;
|
870
|
|
// переменные в stack
|
871
|
|
word* r;
|
872
|
|
word* t;
|
873
|
|
word* four;
|
874
|
|
word* mods;
|
875
|
|
word* mods1;
|
876
|
|
qr_o* qr;
|
877
|
|
// pre
|
878
|
1
|
ASSERT(wwIsDisjoint2(q, n, p, m));
|
879
|
1
|
ASSERT(zzIsOdd(q, n) && wwCmpW(q, n, 3) >= 0);
|
880
|
1
|
ASSERT(wwBitSize(q, n) + 1 <= l && l <= 2 * wwBitSize(q, n));
|
881
|
1
|
ASSERT(base_count <= priBaseSize());
|
882
|
1
|
ASSERT(rng != 0);
|
883
|
|
// подкорректировать n
|
884
|
1
|
n = wwWordSize(q, n);
|
885
|
|
// раскладка stack
|
886
|
1
|
r = (word*)stack;
|
887
|
1
|
t = r + m - n + 1;
|
888
|
1
|
four = t + m + 1;
|
889
|
1
|
mods = four + m;
|
890
|
1
|
mods1 = mods + base_count;
|
891
|
1
|
qr = (qr_o*)(mods1 + base_count);
|
892
|
1
|
stack = (octet*)qr + zmCreate_keep(mo);
|
893
|
|
// малое p?
|
894
|
1
|
if (l < B_PER_W)
|
895
|
|
// при необходимости уменьшить факторную базу
|
896
|
1
|
while (base_count > 0 &&
|
897
|
1
|
priBasePrime(base_count - 1) > WORD_BIT_POS(l - 1))
|
898
|
0
|
--base_count;
|
899
|
|
// попытки
|
900
|
1
|
while (trials == SIZE_MAX || trials--)
|
901
|
|
{
|
902
|
|
// t <-R [2^{l - 2}, 2^{l - 1})
|
903
|
1
|
rng(t, mo, rng_state);
|
904
|
1
|
wwFrom(t, t, mo);
|
905
|
1
|
wwTrimHi(t, m, l - 2);
|
906
|
1
|
wwSetBit(t, l - 2, 1);
|
907
|
|
// r <- t \div q
|
908
|
1
|
zzDiv(r, t, t, m, q, n, stack);
|
909
|
1
|
if (!wwIsZero(t, m))
|
910
|
1
|
VERIFY(zzAddW2(r, m - n + 1, 1) == 0);
|
911
|
|
// t <- q * r
|
912
|
1
|
zzMul(t, q, n, r, m - n + 1, stack);
|
913
|
1
|
if (wwBitSize(t, m) > l - 1)
|
914
|
1
|
continue;
|
915
|
|
// p <- 2 * t + 1
|
916
|
1
|
wwCopy(p, t, m);
|
917
|
1
|
wwShHi(p, m, 1);
|
918
|
1
|
++p[0];
|
919
|
1
|
ASSERT(wwBitSize(p, m) == l);
|
920
|
|
// рассчитать вычеты p, 2q по малым модулям
|
921
|
1
|
priBaseMod(mods, p, m, base_count);
|
922
|
1
|
priBaseMod(mods1, q, n, base_count);
|
923
|
1
|
for (i = 0; i < base_count; ++i)
|
924
|
1
|
if ((mods1[i] += mods1[i]) >= _base[i])
|
925
|
1
|
mods1[i] -= _base[i];
|
926
|
|
// проверка простоты
|
927
|
|
while (1)
|
928
|
|
{
|
929
|
|
// p делится на малые простые?
|
930
|
1
|
for (i = 0; i < base_count; ++i)
|
931
|
1
|
if (mods[i] == 0)
|
932
|
1
|
break;
|
933
|
|
// не делится: тест Демитко
|
934
|
1
|
if (i == base_count)
|
935
|
|
{
|
936
|
|
// создать кольцо вычетов \mod p
|
937
|
1
|
wwTo(t, mo, p);
|
938
|
1
|
zmCreate(qr, (octet*)t, mo, stack);
|
939
|
|
// four <- 4 [в кольце qr]
|
940
|
1
|
qrAdd(four, qr->unity, qr->unity, qr);
|
941
|
1
|
qrAdd(four, four, four, qr);
|
942
|
|
// 4^r \mod p != 1?
|
943
|
1
|
qrPower(t, four, r, m - n + 1, qr, stack);
|
944
|
1
|
if (qrCmp(t, qr->unity, qr) != 0)
|
945
|
|
{
|
946
|
|
// (4^r)^q \mod p == 1?
|
947
|
1
|
qrPower(t, t, q, n, qr, stack);
|
948
|
1
|
if (qrCmp(t, qr->unity, qr) == 0)
|
949
|
1
|
return TRUE;
|
950
|
|
}
|
951
|
|
}
|
952
|
|
// p <- p + 2q, переполнение?
|
953
|
1
|
if (zzAddW2(p + n, m - n, zzAdd2(p, q, n)) ||
|
954
|
1
|
zzAddW2(p + n, m - n, zzAdd2(p, q, n)) ||
|
955
|
1
|
wwBitSize(p, m) > l)
|
956
|
|
break;
|
957
|
|
// r <- r + 1, t <- t + q, пересчитать mods
|
958
|
1
|
zzAddW2(r, m - n + 1, 1);
|
959
|
1
|
zzAddW2(t + n, m - n, zzAdd2(t, q, n));
|
960
|
1
|
for (i = 0; i < base_count; ++i)
|
961
|
1
|
if ((mods[i] += mods1[i]) >= _base[i])
|
962
|
1
|
mods[i] -= _base[i];
|
963
|
|
// к следующей попытке
|
964
|
1
|
if (trials != SIZE_MAX && trials-- == 0)
|
965
|
0
|
return FALSE;
|
966
|
|
}
|
967
|
|
}
|
968
|
0
|
return FALSE;
|
969
|
|
}
|
970
|
|
|
971
|
1
|
size_t priExtendPrime_deep(size_t l, size_t n, size_t base_count)
|
972
|
|
{
|
973
|
1
|
const size_t m = W_OF_B(l);
|
974
|
1
|
const size_t mo = O_OF_B(l);
|
975
|
1
|
const size_t qr_deep = zmCreate_deep(mo);
|
976
|
1
|
ASSERT(m >= n);
|
977
|
1
|
return O_OF_W(m - n + 1 + m + 1 + m + 2 * base_count) + zmCreate_keep(mo) +
|
978
|
1
|
utilMax(4,
|
979
|
|
zzDiv_deep(m, n),
|
980
|
1
|
zzMul_deep(n, m - n + 1),
|
981
|
|
qr_deep,
|
982
|
|
qrPower_deep(m, m, qr_deep));
|
983
|
|
}
|