1
|
|
/*
|
2
|
|
*******************************************************************************
|
3
|
|
\file ecp.c
|
4
|
|
\brief Elliptic curves over prime fields
|
5
|
|
\project bee2 [cryptographic library]
|
6
|
|
\author (C) Sergey Agievich [agievich@{bsu.by|gmail.com}]
|
7
|
|
\created 2012.06.26
|
8
|
|
\version 2016.07.05
|
9
|
|
\license This program is released under the GNU General Public License
|
10
|
|
version 3. See Copyright Notices in bee2/info.h.
|
11
|
|
*******************************************************************************
|
12
|
|
*/
|
13
|
|
|
14
|
|
#include "bee2/core/mem.h"
|
15
|
|
#include "bee2/core/stack.h"
|
16
|
|
#include "bee2/core/util.h"
|
17
|
|
#include "bee2/math/ecp.h"
|
18
|
|
#include "bee2/math/gfp.h"
|
19
|
|
#include "bee2/math/pri.h"
|
20
|
|
#include "bee2/math/ww.h"
|
21
|
|
#include "bee2/math/zz.h"
|
22
|
|
|
23
|
|
/*
|
24
|
|
*******************************************************************************
|
25
|
|
Общие положения
|
26
|
|
|
27
|
|
Ссылки на все реализованные алгоритмы имеются на сайте
|
28
|
|
http://www.hyperelliptic.org/efd. Там же можно найти соглашения по
|
29
|
|
обозначению сложности алгоритмов. В этих обозначениях фигурируют
|
30
|
|
следующие формальные выражения:
|
31
|
|
add -- сложение или вычитание \mod p,
|
32
|
|
c -- умножение на малую константу c (2,3,...) \mod p,
|
33
|
|
half -- умножение на 2^{-1} \mod p,
|
34
|
|
*A -- умножение на коэффициент A \mod p,
|
35
|
|
S -- возведение в квадрат \mod p,
|
36
|
|
M -- умножение \mod p,
|
37
|
|
D -- деление \mod p.
|
38
|
|
|
39
|
|
При общей оценке сложности считается, что 1D = 100M и 1S = 1M.
|
40
|
|
Аддитивные операции игнорируются.
|
41
|
|
|
42
|
|
Используются обозначения:
|
43
|
|
A <- A + A -- сложение аффинных точек,
|
44
|
|
A <- 2A -- удвоение аффинной точки;
|
45
|
|
P <- P + P -- сложение проективных точек;
|
46
|
|
P <- P + A -- добавление к проективной точке аффинной;
|
47
|
|
P <- 2P -- удвоение проективной точки;
|
48
|
|
P <- 2A -- удвоение аффинной точки с переходом к проективным координатам.
|
49
|
|
*******************************************************************************
|
50
|
|
*/
|
51
|
|
|
52
|
|
#define ecpSeemsOnA(a, ec)\
|
53
|
|
(zmIsIn(ecX(a), (ec)->f) && zmIsIn(ecY(a, (ec)->f->n), (ec)->f))
|
54
|
|
|
55
|
|
#define ecpSeemsOn3(a, ec)\
|
56
|
|
(ecpSeemsOnA(a, ec) && zmIsIn(ecZ(a, (ec)->f->n), (ec)->f))
|
57
|
|
|
58
|
|
/*
|
59
|
|
*******************************************************************************
|
60
|
|
Якобиановы координаты:
|
61
|
|
x = X / Z^2, y = Y / Z^3,
|
62
|
|
-(X : Y : Z) = (X : -Y : Z).
|
63
|
|
|
64
|
|
В функции ecpDblJ() выполняется удвоение P <- 2P. Реализован
|
65
|
|
алгоритм dbl-1998-hnm [Hasegawa T., Nakajima J., Matsui M. A Practical
|
66
|
|
Implementation of Elliptic Curve Cryptosystems over GF(p) on a
|
67
|
|
16-bit Microcomputer. Public Key Cryptography, 1998].
|
68
|
|
Сложность алгоритма:
|
69
|
|
3M + 6S + 1*A + 1half + 6add + 3*2 \approx 9M.
|
70
|
|
|
71
|
|
\todo Сравнить dbl-1998-hnm с dbl-2007-bl, сложность которого
|
72
|
|
1M + 8S + 1A + 10add + 1*8 + 2*2 + 1*3.
|
73
|
|
|
74
|
|
В функции ecpDblJA3() выполняется удвоение P <- 2P для случая A = -3.
|
75
|
|
Реализован алгоритм dbl-1998-hnm2 [Hasegawa T., Nakajima J., Matsui M.
|
76
|
|
A Practical Implementation of Elliptic Curve Cryptosystems over GF(p)
|
77
|
|
on a 16-bit Microcomputer. Public Key Cryptography, 1998].
|
78
|
|
Сложность алгоритма:
|
79
|
|
4M + 4S + 1*half + 7add + 3*2 \approx 8M.
|
80
|
|
|
81
|
|
\todo Сравнить dbl-1998-hnm2 с dbl-2001-b, сложность которого
|
82
|
|
3M +5S + 8add + 1*4 + 2*8 + 1*3.
|
83
|
|
|
84
|
|
В функции ecpDblAJ() выполняется удвоение P <- 2A. Реализован алгоритм
|
85
|
|
mdbl-2007-bl [Bernstein-Lange, 2007]. Сложность алгоритма:
|
86
|
|
1M + 5S + 7add + 1*8 + 3*2 + 1*3 \approx 6M.
|
87
|
|
|
88
|
|
В функции ecpAddJ() выполняется сложение P <- P + P. Реализован алгоритм
|
89
|
|
add-2007-bl [Bernstein-Lange, 2007]. Сложность алгоритма:
|
90
|
|
11M + 5S + 9add + 4*2 \approx 16M.
|
91
|
|
|
92
|
|
\todo Сравнить add-2007-bl с add-1998-cmo-2, сложность которого
|
93
|
|
12M + 4S + 6add + 1*2.
|
94
|
|
|
95
|
|
В функции ecpAddAJ() выполняется сложение P <- P + A.
|
96
|
|
Реализован алгоритм madd-2004-hmv [Hankerson D., Menezes A., Vanstone S.
|
97
|
|
Guide to Elliptic Curve Cryptography, Springer, 2004].
|
98
|
|
Сложность алгоритма:
|
99
|
|
8M + 3S + 6add + 1*2 \approx 11M.
|
100
|
|
|
101
|
|
В функции ecpTplJ() выполняется утроение P <- 3P. Реализован алгоритм
|
102
|
|
tpl-2007-bl [Bernstein-Lange, 2007]. Сложность алгоритма
|
103
|
|
5M + 10S + 1*A + 15add + 2*4 + 1*6 + 1*8 + 1*16 + 1*3 \approx 15M.
|
104
|
|
|
105
|
|
В функции ecpTplJA3() выполняется утроение P <- 3P для случая A = -3.
|
106
|
|
Реализован алгоритм tpl-2007-bl-2 [Bernstein-Lange, 2007].
|
107
|
|
Сложность алгоритма
|
108
|
|
7M + 7S + 13add + 2*4 + 1*8 + 1*12 + 1*16 + 1*3 \approx 14M.
|
109
|
|
|
110
|
|
Целевые функции ci(l), определенные в описании реализации ecMul() в ec.c,
|
111
|
|
принимают следующий вид:
|
112
|
|
c1(l) = l/3 11;
|
113
|
|
c2(l, w) = 103 + (2^{w-2} - 2)102 + l/(w + 1) 11;
|
114
|
|
c3(l, w) = 6 + (2^{w-2} - 2)16 + l/(w + 1) 16.
|
115
|
|
|
116
|
|
Расчеты показывают, что
|
117
|
|
с1(l) <= min_w c3(l), l <= 81,
|
118
|
|
min_w c3(l, w) <= m in_w c2(l, w), l <= 899.
|
119
|
|
Поэтому для практически используемых размерностей l (192 <= l <= 571)
|
120
|
|
первые две стратегии являются проигрышными. Реализована только стратегия 3.
|
121
|
|
|
122
|
|
\todo Сравнить madd-2004-hmv с madd-2007-bl, сложность которого
|
123
|
|
7M + 4S + 9add + 1*4 + 3*2.
|
124
|
|
|
125
|
|
\todo При выполнении функции ecpAddAJ() может выясниться, что
|
126
|
|
складываются одинаковые точки. В этом случае вызывается функция
|
127
|
|
ecpDblAJ(). Подумать, как "помочь" этой функции, передав уже
|
128
|
|
рассчитанные значения, например, za^2. Аналогичное замечание касается
|
129
|
|
функции ecpAddJ().
|
130
|
|
*******************************************************************************
|
131
|
|
*/
|
132
|
|
|
133
|
|
// [3n]b <- [2n]a (P <- A)
|
134
|
1
|
static bool_t ecpFromAJ(word b[], const word a[], const ec_o* ec, void* stack)
|
135
|
|
{
|
136
|
1
|
const size_t n = ec->f->n;
|
137
|
|
// pre
|
138
|
1
|
ASSERT(ecIsOperable(ec) && ec->d == 3);
|
139
|
1
|
ASSERT(ecpSeemsOnA(a, ec));
|
140
|
1
|
ASSERT(a == b || wwIsDisjoint2(a, 2 * n, b, 3 * n));
|
141
|
|
// xb <- xa
|
142
|
1
|
qrCopy(ecX(b), ecX(a), ec->f);
|
143
|
|
// yb <- ya
|
144
|
1
|
qrCopy(ecY(b, n), ecY(a, n), ec->f);
|
145
|
|
// zb <- unity
|
146
|
1
|
qrSetUnity(ecZ(b, n), ec->f);
|
147
|
1
|
return TRUE;
|
148
|
|
}
|
149
|
|
|
150
|
|
// [2n]b <- [3n]a (A <- P)
|
151
|
1
|
static bool_t ecpToAJ(word b[], const word a[], const ec_o* ec, void* stack)
|
152
|
|
{
|
153
|
1
|
const size_t n = ec->f->n;
|
154
|
|
// переменные в stack
|
155
|
1
|
word* t1 = (word*)stack;
|
156
|
1
|
word* t2 = t1 + n;
|
157
|
1
|
stack = t2 + n;
|
158
|
|
// pre
|
159
|
1
|
ASSERT(ecIsOperable(ec) && ec->d == 3);
|
160
|
1
|
ASSERT(ecpSeemsOn3(a, ec));
|
161
|
1
|
ASSERT(a == b || wwIsDisjoint2(a, 3 * n, b, 2 * n));
|
162
|
|
// a == O => b <- O
|
163
|
1
|
if (qrIsZero(ecZ(a, n), ec->f))
|
164
|
1
|
return FALSE;
|
165
|
|
// t1 <- za^{-1}
|
166
|
1
|
qrInv(t1, ecZ(a, n), ec->f, stack);
|
167
|
|
// t2 <- t1^2
|
168
|
1
|
qrSqr(t2, t1, ec->f, stack);
|
169
|
|
// xb <- xa t2
|
170
|
1
|
qrMul(ecX(b), ecX(a), t2, ec->f, stack);
|
171
|
|
// t2 <- t1 t2
|
172
|
1
|
qrMul(t2, t1, t2, ec->f, stack);
|
173
|
|
// yb <- ya t2
|
174
|
1
|
qrMul(ecY(b, n), ecY(a, n), t2, ec->f, stack);
|
175
|
|
// b != O
|
176
|
1
|
return TRUE;
|
177
|
|
}
|
178
|
|
|
179
|
1
|
static size_t ecpToAJ_deep(size_t n, size_t f_deep)
|
180
|
|
{
|
181
|
1
|
return O_OF_W(2 * n) + f_deep;
|
182
|
|
}
|
183
|
|
|
184
|
|
// [3n]b <- -[3n]a (P <- -P)
|
185
|
0
|
static void ecpNegJ(word b[], const word a[], const ec_o* ec, void* stack)
|
186
|
|
{
|
187
|
0
|
const size_t n = ec->f->n;
|
188
|
|
// pre
|
189
|
0
|
ASSERT(ecIsOperable(ec) && ec->d == 3);
|
190
|
0
|
ASSERT(ecpSeemsOn3(a, ec));
|
191
|
0
|
ASSERT(wwIsSameOrDisjoint(a, b, 3 * n));
|
192
|
|
// xb <- xa
|
193
|
0
|
qrCopy(ecX(b), ecX(a), ec->f);
|
194
|
|
// yb <- -ya
|
195
|
0
|
zmNeg(ecY(b, n), ecY(a, n), ec->f);
|
196
|
|
// zb <- za
|
197
|
0
|
qrCopy(ecZ(b, n), ecZ(a, n), ec->f);
|
198
|
|
}
|
199
|
|
|
200
|
|
// [3n]b <- 2[3n]a (P <- 2P)
|
201
|
1
|
static void ecpDblJ(word b[], const word a[], const ec_o* ec, void* stack)
|
202
|
|
{
|
203
|
1
|
const size_t n = ec->f->n;
|
204
|
|
// переменные в stack
|
205
|
1
|
word* t1 = (word*)stack;
|
206
|
1
|
word* t2 = t1 + n;
|
207
|
1
|
stack = t2 + n;
|
208
|
|
// pre
|
209
|
1
|
ASSERT(ecIsOperable(ec) && ec->d == 3);
|
210
|
1
|
ASSERT(ecpSeemsOn3(a, ec));
|
211
|
1
|
ASSERT(wwIsSameOrDisjoint(a, b, 3 * n));
|
212
|
|
// za == 0 или ya == 0? => b <- O
|
213
|
1
|
if (qrIsZero(ecZ(a, n), ec->f) || qrIsZero(ecY(a, n), ec->f))
|
214
|
|
{
|
215
|
1
|
qrSetZero(ecZ(b, n), ec->f);
|
216
|
1
|
return;
|
217
|
|
}
|
218
|
|
// t1 <- za^2
|
219
|
1
|
qrSqr(t1, ecZ(a, n), ec->f, stack);
|
220
|
|
// zb <- ya za
|
221
|
1
|
qrMul(ecZ(b, n), ecY(a, n), ecZ(a, n), ec->f, stack);
|
222
|
|
// zb <- 2 zb
|
223
|
1
|
gfpDouble(ecZ(b, n), ecZ(b, n), ec->f);
|
224
|
|
// t1 <- t1^2
|
225
|
1
|
qrSqr(t1, t1, ec->f, stack);
|
226
|
|
// t1 <- A t1
|
227
|
1
|
qrMul(t1, ec->A, t1, ec->f, stack);
|
228
|
|
// t2 <- xa^2
|
229
|
1
|
qrSqr(t2, ecX(a), ec->f, stack);
|
230
|
|
// t1 <- t1 + t2
|
231
|
1
|
zmAdd(t1, t1, t2, ec->f);
|
232
|
|
// t2 <- 2 t2
|
233
|
1
|
gfpDouble(t2, t2, ec->f);
|
234
|
|
// t1 <- t1 + t2
|
235
|
1
|
zmAdd(t1, t1, t2, ec->f);
|
236
|
|
// yb <- 2 ya
|
237
|
1
|
gfpDouble(ecY(b, n), ecY(a, n), ec->f);
|
238
|
|
// yb <- yb^2
|
239
|
1
|
qrSqr(ecY(b, n), ecY(b, n), ec->f, stack);
|
240
|
|
// t2 <- yb^2
|
241
|
1
|
qrSqr(t2, ecY(b, n), ec->f, stack);
|
242
|
|
// t2 <- t2 / 2
|
243
|
1
|
gfpHalf(t2, t2, ec->f);
|
244
|
|
// yb <- yb xa
|
245
|
1
|
qrMul(ecY(b, n), ecY(b, n), ecX(a), ec->f, stack);
|
246
|
|
// xb <- t1^2
|
247
|
1
|
qrSqr(ecX(b), t1, ec->f, stack);
|
248
|
|
// xb <- xb - yb
|
249
|
1
|
zmSub(ecX(b), ecX(b), ecY(b, n), ec->f);
|
250
|
|
// xb <- xb - yb
|
251
|
1
|
zmSub(ecX(b), ecX(b), ecY(b, n), ec->f);
|
252
|
|
// yb <- yb - xb
|
253
|
1
|
zmSub(ecY(b, n), ecY(b, n), ecX(b), ec->f);
|
254
|
|
// yb <- yb t1
|
255
|
1
|
qrMul(ecY(b, n), ecY(b, n), t1, ec->f, stack);
|
256
|
|
// yb <- yb - t2
|
257
|
1
|
zmSub(ecY(b, n), ecY(b, n), t2, ec->f);
|
258
|
|
}
|
259
|
|
|
260
|
1
|
static size_t ecpDblJ_deep(size_t n, size_t f_deep)
|
261
|
|
{
|
262
|
1
|
return O_OF_W(2 * n) + f_deep;
|
263
|
|
}
|
264
|
|
|
265
|
|
// [3n]b <- 2[3n]a (P <- 2P, A = -3)
|
266
|
1
|
static void ecpDblJA3(word b[], const word a[], const ec_o* ec, void* stack)
|
267
|
|
{
|
268
|
1
|
const size_t n = ec->f->n;
|
269
|
|
// переменные в stack
|
270
|
1
|
word* t1 = (word*)stack;
|
271
|
1
|
word* t2 = t1 + n;
|
272
|
1
|
stack = t2 + n;
|
273
|
|
// pre
|
274
|
1
|
ASSERT(ecIsOperable(ec) && ec->d == 3);
|
275
|
1
|
ASSERT(ecpSeemsOn3(a, ec));
|
276
|
1
|
ASSERT(wwIsSameOrDisjoint(a, b, 3 * n));
|
277
|
|
// za == 0 или ya == 0? => b <- O
|
278
|
1
|
if (qrIsZero(ecZ(a, n), ec->f) || qrIsZero(ecY(a, n), ec->f))
|
279
|
|
{
|
280
|
1
|
qrSetZero(ecZ(b, n), ec->f);
|
281
|
1
|
return;
|
282
|
|
}
|
283
|
|
// t1 <- za^2
|
284
|
1
|
qrSqr(t1, ecZ(a, n), ec->f, stack);
|
285
|
|
// zb <- ya za
|
286
|
1
|
qrMul(ecZ(b, n), ecY(a, n), ecZ(a, n), ec->f, stack);
|
287
|
|
// zb <- 2 zb
|
288
|
1
|
gfpDouble(ecZ(b, n), ecZ(b, n), ec->f);
|
289
|
|
// t2 <- xa - t1
|
290
|
1
|
zmSub(t2, ecX(a), t1, ec->f);
|
291
|
|
// t1 <- xa + t1
|
292
|
1
|
zmAdd(t1, ecX(a), t1, ec->f);
|
293
|
|
// t2 <- t1 t2
|
294
|
1
|
qrMul(t2, t1, t2, ec->f, stack);
|
295
|
|
// t1 <- 2 t2
|
296
|
1
|
gfpDouble(t1, t2, ec->f);
|
297
|
|
// t1 <- t1 + t2
|
298
|
1
|
zmAdd(t1, t1, t2, ec->f);
|
299
|
|
// yb <- 2 ya
|
300
|
1
|
gfpDouble(ecY(b, n), ecY(a, n), ec->f);
|
301
|
|
// yb <- yb^2
|
302
|
1
|
qrSqr(ecY(b, n), ecY(b, n), ec->f, stack);
|
303
|
|
// t2 <- yb^2
|
304
|
1
|
qrSqr(t2, ecY(b, n), ec->f, stack);
|
305
|
|
// t2 <- t2 / 2
|
306
|
1
|
gfpHalf(t2, t2, ec->f);
|
307
|
|
// yb <- yb xa
|
308
|
1
|
qrMul(ecY(b, n), ecY(b, n), ecX(a), ec->f, stack);
|
309
|
|
// xb <- t1^2
|
310
|
1
|
qrSqr(ecX(b), t1, ec->f, stack);
|
311
|
|
// xb <- xb - yb
|
312
|
1
|
zmSub(ecX(b), ecX(b), ecY(b, n), ec->f);
|
313
|
|
// xb <- xb - yb
|
314
|
1
|
zmSub(ecX(b), ecX(b), ecY(b, n), ec->f);
|
315
|
|
// yb <- yb - xb
|
316
|
1
|
zmSub(ecY(b, n), ecY(b, n), ecX(b), ec->f);
|
317
|
|
// yb <- yb t1
|
318
|
1
|
qrMul(ecY(b, n), ecY(b, n), t1, ec->f, stack);
|
319
|
|
// yb <- yb - t2
|
320
|
1
|
zmSub(ecY(b, n), ecY(b, n), t2, ec->f);
|
321
|
|
}
|
322
|
|
|
323
|
1
|
static size_t ecpDblJA3_deep(size_t n, size_t f_deep)
|
324
|
|
{
|
325
|
1
|
return O_OF_W(2 * n) + f_deep;
|
326
|
|
}
|
327
|
|
|
328
|
|
// [3n]b <- 2[2n]a (P <- 2A)
|
329
|
1
|
static void ecpDblAJ(word b[], const word a[], const ec_o* ec, void* stack)
|
330
|
|
{
|
331
|
1
|
const size_t n = ec->f->n;
|
332
|
|
// переменные в stack
|
333
|
1
|
word* t1 = (word*)stack;
|
334
|
1
|
word* t2 = t1 + n;
|
335
|
1
|
word* t3 = t2 + n;
|
336
|
1
|
word* t4 = t3 + n;
|
337
|
1
|
stack = t4 + n;
|
338
|
|
// pre
|
339
|
1
|
ASSERT(ecIsOperable(ec) && ec->d == 3);
|
340
|
1
|
ASSERT(ecpSeemsOnA(a, ec));
|
341
|
1
|
ASSERT(a == b || wwIsDisjoint2(a, 2 * n, b, 3 * n));
|
342
|
|
// ya == 0? => b <- O
|
343
|
1
|
if (qrIsZero(ecY(a, n), ec->f))
|
344
|
|
{
|
345
|
0
|
qrSetZero(ecZ(b, n), ec->f);
|
346
|
0
|
return;
|
347
|
|
}
|
348
|
|
// t1 <- xa^2 [X1^2 = XX]
|
349
|
1
|
qrSqr(t1, ecX(a), ec->f, stack);
|
350
|
|
// t2 <- ya^2 [Y1^2 = YY]
|
351
|
1
|
qrSqr(t2, ecY(a, n), ec->f, stack);
|
352
|
|
// t3 <- t2^2 [YY^2 = YYYY]
|
353
|
1
|
qrSqr(t3, t2, ec->f, stack);
|
354
|
|
// t2 <- t2 + xa [X1 + YY]
|
355
|
1
|
zmAdd(t2, t2, ecX(a), ec->f);
|
356
|
|
// t2 <- t2^2 [(X1 + YY)^2]
|
357
|
1
|
qrSqr(t2, t2, ec->f, stack);
|
358
|
|
// t2 <- t2 - t1 [(X1 + YY)^2 - XX]
|
359
|
1
|
zmSub(t2, t2, t1, ec->f);
|
360
|
|
// t2 <- t2 - t3 [(X1 + YY)^2 - XX - YYYY]
|
361
|
1
|
zmSub(t2, t2, t3, ec->f);
|
362
|
|
// t2 <- 2 t2 [2((X1 + YY)^2 - XX - YYYY) = S]
|
363
|
1
|
gfpDouble(t2, t2, ec->f);
|
364
|
|
// t4 <- 2 t1 [2 XX]
|
365
|
1
|
gfpDouble(t4, t1, ec->f);
|
366
|
|
// t4 <- t4 + t1 [3 XX]
|
367
|
1
|
zmAdd(t4, t4, t1, ec->f);
|
368
|
|
// t4 <- t4 + A [3 XX + A = M]
|
369
|
1
|
zmAdd(t4, t4, ec->A, ec->f);
|
370
|
|
// t1 <- 2 t2 [2S]
|
371
|
1
|
gfpDouble(t1, t2, ec->f);
|
372
|
|
// xb <- t4^2 [M^2]
|
373
|
1
|
qrSqr(ecX(b), t4, ec->f, stack);
|
374
|
|
// xb <- xb - t1 [M^2 - 2S = T]
|
375
|
1
|
zmSub(ecX(b), ecX(b), t1, ec->f);
|
376
|
|
// zb <- 2 ya [2Y1]
|
377
|
1
|
gfpDouble(ecZ(b, n), ecY(a, n), ec->f);
|
378
|
|
// t2 <- t2 - xb [S - T]
|
379
|
1
|
zmSub(t2, t2, ecX(b), ec->f);
|
380
|
|
// yb <- t4 t2 [M(S - T)]
|
381
|
1
|
qrMul(ecY(b, n), t4, t2, ec->f, stack);
|
382
|
|
// t3 <- 2 t3 [2 YYYY]
|
383
|
1
|
gfpDouble(t3, t3, ec->f);
|
384
|
|
// t3 <- 2 t3 [4 YYYY]
|
385
|
1
|
gfpDouble(t3, t3, ec->f);
|
386
|
|
// t3 <- 2 t3 [8 YYYY]
|
387
|
1
|
gfpDouble(t3, t3, ec->f);
|
388
|
|
// yb <- yb - t3 [M(S - T) - 8 YYYY]
|
389
|
1
|
zmSub(ecY(b, n), ecY(b, n), t3, ec->f);
|
390
|
|
}
|
391
|
|
|
392
|
1
|
static size_t ecpDblAJ_deep(size_t n, size_t f_deep)
|
393
|
|
{
|
394
|
1
|
return O_OF_W(4 * n) + f_deep;
|
395
|
|
}
|
396
|
|
|
397
|
|
// [3n]c <- [3n]a + [3n]b (P <- P + P)
|
398
|
1
|
static void ecpAddJ(word c[], const word a[], const word b[], const ec_o* ec,
|
399
|
|
void* stack)
|
400
|
|
{
|
401
|
1
|
const size_t n = ec->f->n;
|
402
|
|
// переменные в stack
|
403
|
1
|
word* t1 = (word*)stack;
|
404
|
1
|
word* t2 = t1 + n;
|
405
|
1
|
word* t3 = t2 + n;
|
406
|
1
|
word* t4 = t3 + n;
|
407
|
1
|
stack = t4 + n;
|
408
|
|
// pre
|
409
|
1
|
ASSERT(ecIsOperable(ec) && ec->d == 3);
|
410
|
1
|
ASSERT(ecpSeemsOn3(a, ec));
|
411
|
1
|
ASSERT(ecpSeemsOn3(b, ec));
|
412
|
1
|
ASSERT(wwIsSameOrDisjoint(a, c, 3 * n));
|
413
|
1
|
ASSERT(wwIsSameOrDisjoint(b, c, 3 * n));
|
414
|
|
// a == O => c <- b
|
415
|
1
|
if (qrIsZero(ecZ(a, n), ec->f))
|
416
|
|
{
|
417
|
1
|
wwCopy(c, b, 3 * n);
|
418
|
1
|
return;
|
419
|
|
}
|
420
|
|
// b == O => c <- a
|
421
|
1
|
if (qrIsZero(ecZ(b, n), ec->f))
|
422
|
|
{
|
423
|
0
|
wwCopy(c, a, 3 * n);
|
424
|
0
|
return;
|
425
|
|
}
|
426
|
|
// t1 <- za^2 [Z1Z1]
|
427
|
1
|
qrSqr(t1, ecZ(a, n), ec->f, stack);
|
428
|
|
// t2 <- zb^2 [Z2Z2]
|
429
|
1
|
qrSqr(t2, ecZ(b, n), ec->f, stack);
|
430
|
|
// t3 <- zb t2 [Z2 Z2Z2]
|
431
|
1
|
qrMul(t3, ecZ(b, n), t2, ec->f, stack);
|
432
|
|
// t3 <- ya t3 [Y1 Z2 Z2Z2 = S1]
|
433
|
1
|
qrMul(t3, ecY(a, n), t3, ec->f, stack);
|
434
|
|
// t4 <- za t1 [Z1 Z1Z1]
|
435
|
1
|
qrMul(t4, ecZ(a, n), t1, ec->f, stack);
|
436
|
|
// t4 <- yb t4 [Y2 Z1 Z1Z1 = S2]
|
437
|
1
|
qrMul(t4, ecY(b, n), t4, ec->f, stack);
|
438
|
|
// zc <- za + zb [Z1 + Z2]
|
439
|
1
|
zmAdd(ecZ(c, n), ecZ(a, n), ecZ(b, n), ec->f);
|
440
|
|
// zc <- zc^2 [(Z1 + Z2)^2]
|
441
|
1
|
qrSqr(ecZ(c, n), ecZ(c, n), ec->f, stack);
|
442
|
|
// zc <- zc - t1 [(Z1 + Z2)^2 - Z1Z1]
|
443
|
1
|
zmSub(ecZ(c, n), ecZ(c, n), t1, ec->f);
|
444
|
|
// zc <- zc - t2 [(Z1 + Z2)^2 - Z1Z1 - Z2Z2]
|
445
|
1
|
zmSub(ecZ(c, n), ecZ(c, n), t2, ec->f);
|
446
|
|
// t1 <- xb t1 [X1 Z2Z2 = U2]
|
447
|
1
|
qrMul(t1, ecX(b), t1, ec->f, stack);
|
448
|
|
// t2 <- xa t2 [X2 Z1Z1 = U1]
|
449
|
1
|
qrMul(t2, ecX(a), t2, ec->f, stack);
|
450
|
|
// t1 <- t1 - t2 [U2 - U1 = H]
|
451
|
1
|
zmSub(t1, t1, t2, ec->f);
|
452
|
|
// t1 == 0 => xa zb^2 == xb za^2
|
453
|
1
|
if (qrIsZero(t1, ec->f))
|
454
|
|
{
|
455
|
|
// t3 == t4 => ya zb^3 == yb za^3 => a == b => c <- 2a
|
456
|
1
|
if (qrCmp(t3, t4, ec->f) == 0)
|
457
|
0
|
ecpDblJ(c, c == a ? b : a, ec, stack);
|
458
|
|
// t3 != t4 => a == -b => c <- O
|
459
|
|
else
|
460
|
1
|
qrSetZero(ecZ(c, n), ec->f);
|
461
|
1
|
return;
|
462
|
|
}
|
463
|
|
// zc <- zc t1 [((Z1 + Z2)^2 - Z1Z1 - Z2Z2)H = Z3]
|
464
|
1
|
qrMul(ecZ(c, n), ecZ(c, n), t1, ec->f, stack);
|
465
|
|
// t4 <- t4 - t3 [S2 - S1]
|
466
|
1
|
zmSub(t4, t4, t3, ec->f);
|
467
|
|
// t4 <- 2 t4 [2(S2 - S1) = r]
|
468
|
1
|
gfpDouble(t4, t4, ec->f);
|
469
|
|
// yc <- 2 t1 [2H]
|
470
|
1
|
gfpDouble(ecY(c, n), t1, ec->f);
|
471
|
|
// yc <- yc^2 [(2H)^2 = I]
|
472
|
1
|
qrSqr(ecY(c, n), ecY(c, n), ec->f, stack);
|
473
|
|
// t1 <- t1 yc [H I = J]
|
474
|
1
|
qrMul(t1, t1, ecY(c, n), ec->f, stack);
|
475
|
|
// yc <- t2 yc [U1 I = V]
|
476
|
1
|
qrMul(ecY(c, n), t2, ecY(c, n), ec->f, stack);
|
477
|
|
// t2 <- 2 yc [2 V]
|
478
|
1
|
gfpDouble(t2, ecY(c, n), ec->f);
|
479
|
|
// xc <- t4^2 [r^2]
|
480
|
1
|
qrSqr(ecX(c), t4, ec->f, stack);
|
481
|
|
// xc <- xc - t1 [r^2 - J]
|
482
|
1
|
zmSub(ecX(c), ecX(c), t1, ec->f);
|
483
|
|
// xc <- xc - t2 [r^2 - J - 2V = X3]
|
484
|
1
|
zmSub(ecX(c), ecX(c), t2, ec->f);
|
485
|
|
// yc <- yc - xc [V - X3]
|
486
|
1
|
zmSub(ecY(c, n), ecY(c, n), ecX(c), ec->f);
|
487
|
|
// yc <- t4 yc [r(V - X3)]
|
488
|
1
|
qrMul(ecY(c, n), t4, ecY(c, n), ec->f, stack);
|
489
|
|
// t3 <- 2 t3 [2S1]
|
490
|
1
|
gfpDouble(t3, t3, ec->f);
|
491
|
|
// t3 <- t3 t1 [2S1 J]
|
492
|
1
|
qrMul(t3, t3, t1, ec->f, stack);
|
493
|
|
// yc <- yc - t3 [r(V - X3) - 2 S1 J]
|
494
|
1
|
zmSub(ecY(c, n), ecY(c, n), t3, ec->f);
|
495
|
|
}
|
496
|
|
|
497
|
1
|
static size_t ecpAddJ_deep(size_t n, size_t f_deep)
|
498
|
|
{
|
499
|
1
|
return O_OF_W(4 * n) +
|
500
|
1
|
utilMax(2,
|
501
|
|
f_deep,
|
502
|
|
ecpDblJ_deep(n, f_deep));
|
503
|
|
}
|
504
|
|
|
505
|
|
// [3n]c <- [3n]a + [2n]b (P <- P + A)
|
506
|
1
|
static void ecpAddAJ(word c[], const word a[], const word b[], const ec_o* ec,
|
507
|
|
void* stack)
|
508
|
|
{
|
509
|
1
|
const size_t n = ec->f->n;
|
510
|
|
// переменные в stack
|
511
|
1
|
word* t1 = (word*)stack;
|
512
|
1
|
word* t2 = t1 + n;
|
513
|
1
|
word* t3 = t2 + n;
|
514
|
1
|
word* t4 = t3 + n;
|
515
|
1
|
stack = t4 + n;
|
516
|
|
// pre
|
517
|
1
|
ASSERT(ecIsOperable(ec) && ec->d == 3);
|
518
|
1
|
ASSERT(ecpSeemsOn3(a, ec));
|
519
|
1
|
ASSERT(ecpSeemsOnA(b, ec));
|
520
|
1
|
ASSERT(wwIsSameOrDisjoint(a, c, 3 * n));
|
521
|
1
|
ASSERT(b == c || wwIsDisjoint2(b, 2 * n, c, 3 * n));
|
522
|
|
// a == O => c <- (xb : yb : 1)
|
523
|
1
|
if (qrIsZero(ecZ(a, n), ec->f))
|
524
|
|
{
|
525
|
1
|
qrCopy(ecX(c), ecX(b), ec->f);
|
526
|
1
|
qrCopy(ecY(c, n), ecY(b, n), ec->f);
|
527
|
1
|
qrSetUnity(ecZ(c, n), ec->f);
|
528
|
1
|
return;
|
529
|
|
}
|
530
|
|
// t1 <- za^2
|
531
|
1
|
qrSqr(t1, ecZ(a, n), ec->f, stack);
|
532
|
|
// t2 <- t1 za
|
533
|
1
|
qrMul(t2, t1, ecZ(a, n), ec->f, stack);
|
534
|
|
// t1 <- t1 xb
|
535
|
1
|
qrMul(t1, t1, ecX(b), ec->f, stack);
|
536
|
|
// t2 <- t2 yb
|
537
|
1
|
qrMul(t2, t2, ecY(b, n), ec->f, stack);
|
538
|
|
// t1 <- t1 - xa
|
539
|
1
|
zmSub(t1, t1, ecX(a), ec->f);
|
540
|
|
// t2 <- t2 - ya
|
541
|
1
|
zmSub(t2, t2, ecY(a, n), ec->f);
|
542
|
|
// t1 == 0?
|
543
|
1
|
if (qrIsZero(t1, ec->f))
|
544
|
|
{
|
545
|
|
// t2 == 0 => c <- 2(xb : yb : 1)
|
546
|
0
|
if (qrIsZero(t2, ec->f))
|
547
|
0
|
ecpDblAJ(c, b, ec, stack);
|
548
|
|
// t2 != 0 => c <- O
|
549
|
|
else
|
550
|
0
|
qrSetZero(ecZ(c, n), ec->f);
|
551
|
0
|
return;
|
552
|
|
}
|
553
|
|
// zc <- t1 za
|
554
|
1
|
qrMul(ecZ(c, n), t1, ecZ(a, n), ec->f, stack);
|
555
|
|
// t3 <- t1^2
|
556
|
1
|
qrSqr(t3, t1, ec->f, stack);
|
557
|
|
// t4 <- t1 t3
|
558
|
1
|
qrMul(t4, t1, t3, ec->f, stack);
|
559
|
|
// t3 <- t3 xa
|
560
|
1
|
qrMul(t3, t3, ecX(a), ec->f, stack);
|
561
|
|
// t1 <- 2 t3
|
562
|
1
|
gfpDouble(t1, t3, ec->f);
|
563
|
|
// xc <- t2^2
|
564
|
1
|
qrSqr(ecX(c), t2, ec->f, stack);
|
565
|
|
// xc <- xc - t1
|
566
|
1
|
zmSub(ecX(c), ecX(c), t1, ec->f);
|
567
|
|
// xc <- xc - t4
|
568
|
1
|
zmSub(ecX(c), ecX(c), t4, ec->f);
|
569
|
|
// t3 <- t3 - xc
|
570
|
1
|
zmSub(t3, t3, ecX(c), ec->f);
|
571
|
|
// t3 <- t3 t2
|
572
|
1
|
qrMul(t3, t3, t2, ec->f, stack);
|
573
|
|
// t4 <- t4 ya
|
574
|
1
|
qrMul(t4, t4, ecY(a, n), ec->f, stack);
|
575
|
|
// yc <- t3 - t4
|
576
|
1
|
zmSub(ecY(c, n), t3, t4, ec->f);
|
577
|
|
}
|
578
|
|
|
579
|
1
|
static size_t ecpAddAJ_deep(size_t n, size_t f_deep)
|
580
|
|
{
|
581
|
1
|
return O_OF_W(4 * n) +
|
582
|
1
|
utilMax(2,
|
583
|
|
f_deep,
|
584
|
|
ecpDblAJ_deep(n, f_deep));
|
585
|
|
}
|
586
|
|
|
587
|
|
// [3n]c <- [3n]a - [3n]b (P <- P - P)
|
588
|
1
|
void ecpSubJ(word c[], const word a[], const word b[], const ec_o* ec,
|
589
|
|
void* stack)
|
590
|
|
{
|
591
|
1
|
const size_t n = ec->f->n;
|
592
|
|
// переменные в stack
|
593
|
1
|
word* t = (word*)stack;
|
594
|
1
|
stack = t + 3 * n;
|
595
|
|
// pre
|
596
|
1
|
ASSERT(ecIsOperable(ec) && ec->d == 3);
|
597
|
1
|
ASSERT(ecpSeemsOn3(a, ec));
|
598
|
1
|
ASSERT(ecpSeemsOn3(b, ec));
|
599
|
1
|
ASSERT(wwIsSameOrDisjoint(a, c, 3 * n));
|
600
|
1
|
ASSERT(wwIsSameOrDisjoint(b, c, 3 * n));
|
601
|
|
// t <- -b
|
602
|
1
|
qrCopy(ecX(t), ecX(b), ec->f);
|
603
|
1
|
zmNeg(ecY(t, n), ecY(b, n), ec->f);
|
604
|
1
|
qrCopy(ecZ(t, n), ecZ(b, n), ec->f);
|
605
|
|
// c <- a + t
|
606
|
1
|
ecpAddJ(c, a, t, ec, stack);
|
607
|
|
}
|
608
|
|
|
609
|
1
|
size_t ecpSubJ_deep(size_t n, size_t f_deep)
|
610
|
|
{
|
611
|
1
|
return O_OF_W(3 * n) + ecpAddJ_deep(n, f_deep);
|
612
|
|
}
|
613
|
|
|
614
|
|
// [3n]c <- [3n]a - [2n]b (P <- P - A)
|
615
|
1
|
static void ecpSubAJ(word c[], const word a[], const word b[], const ec_o* ec,
|
616
|
|
void* stack)
|
617
|
|
{
|
618
|
1
|
const size_t n = ec->f->n;
|
619
|
|
// переменные в stack
|
620
|
1
|
word* t = (word*)stack;
|
621
|
1
|
stack = t + 2 * n;
|
622
|
|
// pre
|
623
|
1
|
ASSERT(ecIsOperable(ec) && ec->d == 3);
|
624
|
1
|
ASSERT(ecpSeemsOn3(a, ec));
|
625
|
1
|
ASSERT(ecpSeemsOnA(b, ec));
|
626
|
1
|
ASSERT(wwIsSameOrDisjoint(a, c, 3 * n));
|
627
|
1
|
ASSERT(b == c || wwIsDisjoint2(b, 2 * n, c, 3 * n));
|
628
|
|
// t <- -b
|
629
|
1
|
qrCopy(ecX(t), ecX(b), ec->f);
|
630
|
1
|
zmNeg(ecY(t, n), ecY(b, n), ec->f);
|
631
|
|
// c <- a + t
|
632
|
1
|
ecpAddAJ(c, a, t, ec, stack);
|
633
|
|
}
|
634
|
|
|
635
|
1
|
static size_t ecpSubAJ_deep(size_t n, size_t f_deep)
|
636
|
|
{
|
637
|
1
|
return O_OF_W(2 * n) + ecpAddAJ_deep(n, f_deep);
|
638
|
|
}
|
639
|
|
|
640
|
|
// [3n]b <- 3[3n]a (P <- 3P)
|
641
|
0
|
static void ecpTplJ(word b[], const word a[], const ec_o* ec, void* stack)
|
642
|
|
{
|
643
|
0
|
const size_t n = ec->f->n;
|
644
|
|
// переменные в stack
|
645
|
0
|
word* t0 = (word*)stack;
|
646
|
0
|
word* t1 = t0 + n;
|
647
|
0
|
word* t2 = t1 + n;
|
648
|
0
|
word* t3 = t2 + n;
|
649
|
0
|
word* t4 = t3 + n;
|
650
|
0
|
word* t5 = t4 + n;
|
651
|
0
|
word* t6 = t5 + n;
|
652
|
0
|
word* t7 = t6 + n;
|
653
|
0
|
stack = t7 + n;
|
654
|
|
// pre
|
655
|
0
|
ASSERT(ecIsOperable(ec) && ec->d == 3);
|
656
|
0
|
ASSERT(ecpSeemsOn3(a, ec));
|
657
|
0
|
ASSERT(wwIsSameOrDisjoint(a, b, 3 * n));
|
658
|
|
// t0 <- xa^2 [XX]
|
659
|
0
|
qrSqr(t0, ecX(a), ec->f, stack);
|
660
|
|
// t1 <- ya^2 [YY]
|
661
|
0
|
qrSqr(t1, ecY(a, n), ec->f, stack);
|
662
|
|
// t2 <- za^2 [ZZ]
|
663
|
0
|
qrSqr(t2, ecZ(a, n), ec->f, stack);
|
664
|
|
// t3 <- t1^2 [YYYY]
|
665
|
0
|
qrSqr(t3, t1, ec->f, stack);
|
666
|
|
// t4 <- 3 t0 + A t2^2 [M]
|
667
|
0
|
qrSqr(t4, t2, ec->f, stack);
|
668
|
0
|
qrMul(t4, t4, ec->A, ec->f, stack);
|
669
|
0
|
gfpDouble(t5, t0, ec->f);
|
670
|
0
|
zmAdd(t5, t0, t5, ec->f);
|
671
|
0
|
zmAdd(t4, t4, t5, ec->f);
|
672
|
|
// t5 <- t4^2 [MM]
|
673
|
0
|
qrSqr(t5, t4, ec->f, stack);
|
674
|
|
// t6 <- 6((xa + t1)^2 - t0 - t3) - t5 [E]
|
675
|
0
|
zmAdd(t6, ecX(a), t1, ec->f);
|
676
|
0
|
qrSqr(t6, t6, ec->f, stack);
|
677
|
0
|
zmSub(t6, t6, t0, ec->f);
|
678
|
0
|
zmSub(t6, t6, t3, ec->f);
|
679
|
0
|
gfpDouble(t7, t6, ec->f);
|
680
|
0
|
zmAdd(t6, t6, t7, ec->f);
|
681
|
0
|
gfpDouble(t6, t6, ec->f);
|
682
|
0
|
zmSub(t6, t6, t5, ec->f);
|
683
|
|
// t7 <- t6^2 [EE]
|
684
|
0
|
qrSqr(t7, t6, ec->f, stack);
|
685
|
|
// t3 <- 16 t3 [T]
|
686
|
0
|
gfpDouble(t3, t3, ec->f);
|
687
|
0
|
gfpDouble(t3, t3, ec->f);
|
688
|
0
|
gfpDouble(t3, t3, ec->f);
|
689
|
0
|
gfpDouble(t3, t3, ec->f);
|
690
|
|
// zb <- (za + t6)^2 - t2 - t7
|
691
|
0
|
zmAdd(ecZ(b, n), ecZ(a, n), t6, ec->f);
|
692
|
0
|
qrSqr(ecZ(b, n), ecZ(b, n), ec->f, stack);
|
693
|
0
|
zmSub(ecZ(b, n), ecZ(b, n), t2, ec->f);
|
694
|
0
|
zmSub(ecZ(b, n), ecZ(b, n), t7, ec->f);
|
695
|
|
// t2 <- (t4 + t6)^2 - t5 - t7 - t3 [U]
|
696
|
0
|
zmAdd(t2, t4, t6, ec->f);
|
697
|
0
|
qrSqr(t2, t2, ec->f, stack);
|
698
|
0
|
zmSub(t2, t2, t5, ec->f);
|
699
|
0
|
zmSub(t2, t2, t7, ec->f);
|
700
|
0
|
zmSub(t2, t2, t3, ec->f);
|
701
|
|
// yb <- 8 ya (t2(t3 - t2) - t6 t7)
|
702
|
0
|
zmSub(t3, t3, t2, ec->f);
|
703
|
0
|
qrMul(t3, t2, t3, ec->f, stack);
|
704
|
0
|
qrMul(t6, t6, t7, ec->f, stack);
|
705
|
0
|
zmSub(t3, t3, t6, ec->f);
|
706
|
0
|
qrMul(ecY(b, n), ecY(a, n), t3, ec->f, stack);
|
707
|
0
|
gfpDouble(ecY(b, n), ecY(b, n), ec->f);
|
708
|
0
|
gfpDouble(ecY(b, n), ecY(b, n), ec->f);
|
709
|
0
|
gfpDouble(ecY(b, n), ecY(b, n), ec->f);
|
710
|
|
// xb <- 4 (xa t7 - 4 t1 t2)
|
711
|
0
|
qrMul(t1, t1, t2, ec->f, stack);
|
712
|
0
|
gfpDouble(t1, t1, ec->f);
|
713
|
0
|
gfpDouble(t1, t1, ec->f);
|
714
|
0
|
qrMul(ecX(b), ecX(a), t7, ec->f, stack);
|
715
|
0
|
zmSub(ecX(b), ecX(b), t1, ec->f);
|
716
|
0
|
gfpDouble(ecX(b), ecX(b), ec->f);
|
717
|
0
|
gfpDouble(ecX(b), ecX(b), ec->f);
|
718
|
|
}
|
719
|
|
|
720
|
1
|
static size_t ecpTplJ_deep(size_t n, size_t f_deep)
|
721
|
|
{
|
722
|
1
|
return O_OF_W(8 * n) + f_deep;
|
723
|
|
}
|
724
|
|
|
725
|
|
// [3n]b <- 3[3n]a (P <- 3P)
|
726
|
0
|
static void ecpTplJA3(word b[], const word a[], const ec_o* ec, void* stack)
|
727
|
|
{
|
728
|
0
|
const size_t n = ec->f->n;
|
729
|
|
// переменные в stack
|
730
|
0
|
word* t1 = (word*)stack;
|
731
|
0
|
word* t2 = t1 + n;
|
732
|
0
|
word* t3 = t2 + n;
|
733
|
0
|
word* t4 = t3 + n;
|
734
|
0
|
word* t5 = t4 + n;
|
735
|
0
|
word* t6 = t5 + n;
|
736
|
0
|
word* t7 = t6 + n;
|
737
|
0
|
stack = t7 + n;
|
738
|
|
// pre
|
739
|
0
|
ASSERT(ecIsOperable(ec) && ec->d == 3);
|
740
|
0
|
ASSERT(ecpSeemsOn3(a, ec));
|
741
|
0
|
ASSERT(wwIsSameOrDisjoint(a, b, 3 * n));
|
742
|
|
// t1 <- ya^2 [YY]
|
743
|
0
|
qrSqr(t1, ecY(a, n), ec->f, stack);
|
744
|
|
// t2 <- za^2 [ZZ]
|
745
|
0
|
qrSqr(t2, ecZ(a, n), ec->f, stack);
|
746
|
|
// t3 <- t1^2 [YYYY]
|
747
|
0
|
qrSqr(t3, t1, ec->f, stack);
|
748
|
|
// t4 <- 3(xa - t2)(xa + t2) [M]
|
749
|
0
|
zmSub(t4, ecX(a), t2, ec->f);
|
750
|
0
|
zmAdd(t5, ecX(a), t2, ec->f);
|
751
|
0
|
qrMul(t4, t4, t5, ec->f, stack);
|
752
|
0
|
gfpDouble(t5, t4, ec->f);
|
753
|
0
|
zmAdd(t4, t4, t5, ec->f);
|
754
|
|
// t5 <- t4^2 [MM]
|
755
|
0
|
qrSqr(t5, t4, ec->f, stack);
|
756
|
|
// t6 <- 12 xa t1 - t5 [E]
|
757
|
0
|
qrMul(t6, ecX(a), t1, ec->f, stack);
|
758
|
0
|
gfpDouble(t7, t6, ec->f);
|
759
|
0
|
zmAdd(t6, t6, t7, ec->f);
|
760
|
0
|
gfpDouble(t6, t6, ec->f);
|
761
|
0
|
gfpDouble(t6, t6, ec->f);
|
762
|
0
|
zmSub(t6, t6, t5, ec->f);
|
763
|
|
// t7 <- t6^2 [EE]
|
764
|
0
|
qrSqr(t7, t6, ec->f, stack);
|
765
|
|
// t3 <- 16 t3 [T]
|
766
|
0
|
gfpDouble(t3, t3, ec->f);
|
767
|
0
|
gfpDouble(t3, t3, ec->f);
|
768
|
0
|
gfpDouble(t3, t3, ec->f);
|
769
|
0
|
gfpDouble(t3, t3, ec->f);
|
770
|
|
// zb <- (za + t6)^2 - t2 - t7
|
771
|
0
|
zmAdd(ecZ(b, n), ecZ(a, n), t6, ec->f);
|
772
|
0
|
qrSqr(ecZ(b, n), ecZ(b, n), ec->f, stack);
|
773
|
0
|
zmSub(ecZ(b, n), ecZ(b, n), t2, ec->f);
|
774
|
0
|
zmSub(ecZ(b, n), ecZ(b, n), t7, ec->f);
|
775
|
|
// t2 <- (t4 + t6)^2 - t5 - t7 - t3 [U]
|
776
|
0
|
zmAdd(t2, t4, t6, ec->f);
|
777
|
0
|
qrSqr(t2, t2, ec->f, stack);
|
778
|
0
|
zmSub(t2, t2, t5, ec->f);
|
779
|
0
|
zmSub(t2, t2, t7, ec->f);
|
780
|
0
|
zmSub(t2, t2, t3, ec->f);
|
781
|
|
// yb <- 8 ya (t2(t3 - t2) - t6 t7)
|
782
|
0
|
zmSub(t3, t3, t2, ec->f);
|
783
|
0
|
qrMul(t3, t2, t3, ec->f, stack);
|
784
|
0
|
qrMul(t6, t6, t7, ec->f, stack);
|
785
|
0
|
zmSub(t3, t3, t6, ec->f);
|
786
|
0
|
qrMul(ecY(b, n), ecY(a, n), t3, ec->f, stack);
|
787
|
0
|
gfpDouble(ecY(b, n), ecY(b, n), ec->f);
|
788
|
0
|
gfpDouble(ecY(b, n), ecY(b, n), ec->f);
|
789
|
0
|
gfpDouble(ecY(b, n), ecY(b, n), ec->f);
|
790
|
|
// xb <- 4 (xa t7 - 4 t1 t2)
|
791
|
0
|
qrMul(t1, t1, t2, ec->f, stack);
|
792
|
0
|
gfpDouble(t1, t1, ec->f);
|
793
|
0
|
gfpDouble(t1, t1, ec->f);
|
794
|
0
|
qrMul(ecX(b), ecX(a), t7, ec->f, stack);
|
795
|
0
|
zmSub(ecX(b), ecX(b), t1, ec->f);
|
796
|
0
|
gfpDouble(ecX(b), ecX(b), ec->f);
|
797
|
0
|
gfpDouble(ecX(b), ecX(b), ec->f);
|
798
|
|
}
|
799
|
|
|
800
|
1
|
size_t ecpTplJA3_deep(size_t n, size_t f_deep)
|
801
|
|
{
|
802
|
1
|
return O_OF_W(7 * n) + f_deep;
|
803
|
|
}
|
804
|
|
|
805
|
1
|
bool_t ecpCreateJ(ec_o* ec, const qr_o* f, const octet A[], const octet B[],
|
806
|
|
void* stack)
|
807
|
|
{
|
808
|
|
register bool_t bA3;
|
809
|
|
word* t;
|
810
|
|
// pre
|
811
|
1
|
ASSERT(memIsValid(ec, sizeof(ec_o)));
|
812
|
1
|
ASSERT(gfpIsOperable(f));
|
813
|
1
|
ASSERT(memIsValid(A, f->no));
|
814
|
1
|
ASSERT(memIsValid(B, f->no));
|
815
|
|
// обнулить
|
816
|
1
|
memSetZero(ec, sizeof(ec_o));
|
817
|
|
// зафикисровать размерности
|
818
|
1
|
ec->d = 3;
|
819
|
|
// запомнить базовое поле
|
820
|
1
|
ec->f = f;
|
821
|
|
// сохранить коэффициенты
|
822
|
1
|
ec->A = (word*)ec->descr;
|
823
|
1
|
ec->B = ec->A + f->n;
|
824
|
1
|
if (!qrFrom(ec->A, A, ec->f, stack) || !qrFrom(ec->B, B, ec->f, stack))
|
825
|
0
|
return FALSE;
|
826
|
|
// t <- -3
|
827
|
1
|
t = (word*)stack;
|
828
|
1
|
gfpDouble(t, f->unity, f);
|
829
|
1
|
zmAdd(t, t, f->unity, f);
|
830
|
1
|
zmNeg(t, t, f);
|
831
|
|
// bA3 <- A == -3?
|
832
|
1
|
bA3 = qrCmp(t, ec->A, f) == 0;
|
833
|
|
// подготовить буферы для описания группы точек
|
834
|
1
|
ec->base = ec->B + f->n;
|
835
|
1
|
ec->order = ec->base + 2 * f->n;
|
836
|
|
// настроить интерфейсы
|
837
|
1
|
ec->froma = ecpFromAJ;
|
838
|
1
|
ec->toa = ecpToAJ;
|
839
|
1
|
ec->neg = ecpNegJ;
|
840
|
1
|
ec->add = ecpAddJ;
|
841
|
1
|
ec->adda = ecpAddAJ;
|
842
|
1
|
ec->sub = ecpSubJ;
|
843
|
1
|
ec->suba = ecpSubAJ;
|
844
|
1
|
ec->dbl = bA3 ? ecpDblJA3 : ecpDblJ;
|
845
|
1
|
ec->dbla = ecpDblAJ;
|
846
|
1
|
ec->tpl = bA3 ? ecpTplJA3 : ecpTplJ;
|
847
|
1
|
ec->deep = utilMax(9,
|
848
|
|
ecpToAJ_deep(f->n, f->deep),
|
849
|
|
ecpAddJ_deep(f->n, f->deep),
|
850
|
|
ecpAddAJ_deep(f->n, f->deep),
|
851
|
|
ecpSubJ_deep(f->n, f->deep),
|
852
|
|
ecpSubAJ_deep(f->n, f->deep),
|
853
|
1
|
bA3 ? ecpDblJA3_deep(f->n, f->deep) : ecpDblJ_deep(f->n, f->deep),
|
854
|
|
ecpDblAJ_deep(f->n, f->deep),
|
855
|
1
|
bA3 ? ecpTplJA3_deep(f->n, f->deep) : ecpTplJ_deep(f->n, f->deep));
|
856
|
|
// настроить
|
857
|
1
|
ec->hdr.keep = sizeof(ec_o) + O_OF_W(5 * f->n + 1);
|
858
|
1
|
ec->hdr.p_count = 6;
|
859
|
1
|
ec->hdr.o_count = 1;
|
860
|
|
// все нормально
|
861
|
1
|
bA3 = 0;
|
862
|
1
|
return TRUE;
|
863
|
|
}
|
864
|
|
|
865
|
1
|
size_t ecpCreateJ_keep(size_t n)
|
866
|
|
{
|
867
|
1
|
return sizeof(ec_o) + O_OF_W(5 * n + 1);
|
868
|
|
}
|
869
|
|
|
870
|
1
|
size_t ecpCreateJ_deep(size_t n, size_t f_deep)
|
871
|
|
{
|
872
|
1
|
return utilMax(11,
|
873
|
|
O_OF_W(n),
|
874
|
|
ecpToAJ_deep(n, f_deep),
|
875
|
|
ecpAddJ_deep(n, f_deep),
|
876
|
|
ecpAddAJ_deep(n, f_deep),
|
877
|
|
ecpSubJ_deep(n, f_deep),
|
878
|
|
ecpSubAJ_deep(n, f_deep),
|
879
|
|
ecpDblJ_deep(n, f_deep),
|
880
|
|
ecpDblJA3_deep(n, f_deep),
|
881
|
|
ecpDblAJ_deep(n, f_deep),
|
882
|
|
ecpTplJ_deep(n, f_deep),
|
883
|
|
ecpTplJA3_deep(n, f_deep));
|
884
|
|
}
|
885
|
|
|
886
|
|
/*
|
887
|
|
*******************************************************************************
|
888
|
|
Свойства кривой
|
889
|
|
*******************************************************************************
|
890
|
|
*/
|
891
|
|
|
892
|
1
|
bool_t ecpIsValid(const ec_o* ec, void* stack)
|
893
|
|
{
|
894
|
1
|
size_t n = ec->f->n;
|
895
|
|
// переменные в stack
|
896
|
1
|
word* t1 = (word*)stack;
|
897
|
1
|
word* t2 = t1 + n;
|
898
|
1
|
word* t3 = t2 + n;
|
899
|
1
|
stack = t3 + n;
|
900
|
|
// кривая работоспособна? поле ec->f корректно?
|
901
|
|
// ec->deep >= ec->f->deep?
|
902
|
|
// A, B \in ec->f?
|
903
|
1
|
if (!ecIsOperable2(ec) ||
|
904
|
1
|
!gfpIsValid(ec->f, stack) ||
|
905
|
1
|
ec->deep < ec->f->deep ||
|
906
|
1
|
!zmIsIn(ec->A, ec->f) ||
|
907
|
1
|
!zmIsIn(ec->B, ec->f))
|
908
|
0
|
return FALSE;
|
909
|
|
// t1 <- 4 A^3
|
910
|
1
|
qrSqr(t1, ec->A, ec->f, stack);
|
911
|
1
|
qrMul(t1, t1, ec->A, ec->f, stack);
|
912
|
1
|
gfpDouble(t1, t1, ec->f);
|
913
|
1
|
gfpDouble(t1, t1, ec->f);
|
914
|
|
// t3 <- 3 B^2
|
915
|
1
|
qrSqr(t2, ec->B, ec->f, stack);
|
916
|
1
|
gfpDouble(t3, t2, ec->f);
|
917
|
1
|
zmAdd(t3, t3, t2, ec->f);
|
918
|
|
// t2 <- 3 t3 [27 B^2]
|
919
|
1
|
gfpDouble(t2, t3, ec->f);
|
920
|
1
|
zmAdd(t2, t3, t2, ec->f);
|
921
|
|
// t1 <- t1 + t2 [4 A^3 + 27 B^2 -- дискриминант]
|
922
|
1
|
zmAdd(t1, t1, t2, ec->f);
|
923
|
|
// t1 == 0 => сингулярная кривая
|
924
|
1
|
return !qrIsZero(t1, ec->f);
|
925
|
|
}
|
926
|
|
|
927
|
1
|
size_t ecpIsValid_deep(size_t n, size_t f_deep)
|
928
|
|
{
|
929
|
1
|
return O_OF_W(3 * n) +
|
930
|
1
|
utilMax(2,
|
931
|
|
f_deep,
|
932
|
|
gfpIsValid_deep(n));
|
933
|
|
}
|
934
|
|
|
935
|
1
|
bool_t ecpSeemsValidGroup(const ec_o* ec, void* stack)
|
936
|
|
{
|
937
|
1
|
size_t n = ec->f->n;
|
938
|
|
int cmp;
|
939
|
|
word w;
|
940
|
|
// переменные в stack
|
941
|
1
|
word* t1 = (word*)stack;
|
942
|
1
|
word* t2 = t1 + n + 1;
|
943
|
1
|
word* t3 = t2 + n + 2;
|
944
|
1
|
stack = t3 + 2 * n;
|
945
|
|
// pre
|
946
|
1
|
ASSERT(ecIsOperable(ec));
|
947
|
|
// ecIsOperableGroup(ec) == TRUE? base \in ec?
|
948
|
1
|
if (!ecIsOperableGroup(ec) ||
|
949
|
1
|
!ecpIsOnA(ec->base, ec, stack))
|
950
|
0
|
return FALSE;
|
951
|
|
// [n + 2]t1 <- order * cofactor
|
952
|
1
|
t1[n + 1] = zzMulW(t1, ec->order, n + 1, ec->cofactor);
|
953
|
|
// t1 <- |t1 - (p + 1)|
|
954
|
1
|
if (zzSubW2(t1, n + 2, 1))
|
955
|
0
|
return FALSE;
|
956
|
1
|
if (wwCmp2(t1, n + 2, ec->f->mod, n) >= 0)
|
957
|
1
|
zzSubW2(t1 + n, 2, zzSub2(t1, ec->f->mod, n));
|
958
|
|
else
|
959
|
1
|
zzSub(t1, ec->f->mod, t1, n);
|
960
|
|
// n <- длина t1
|
961
|
1
|
n = wwWordSize(t1, n + 2);
|
962
|
|
// n > ec->f->n => t1^2 > 4 p
|
963
|
1
|
if (n > ec->f->n)
|
964
|
0
|
return FALSE;
|
965
|
|
// [2n]t2 <- ([n]t1)^2
|
966
|
1
|
zzSqr(t2, t1, n, stack);
|
967
|
|
// условие Хассе: t2 <= 4 p?
|
968
|
1
|
w = wwGetBits(t2, 0, 2);
|
969
|
1
|
wwShLo(t2, 2 * n, 2);
|
970
|
1
|
cmp = wwCmp2(t2, 2 * n, ec->f->mod, ec->f->n);
|
971
|
1
|
if (cmp > 0 || cmp == 0 && w != 0)
|
972
|
0
|
return FALSE;
|
973
|
|
// все нормально
|
974
|
1
|
return TRUE;
|
975
|
|
}
|
976
|
|
|
977
|
1
|
size_t ecpSeemsValidGroup_deep(size_t n, size_t f_deep)
|
978
|
|
{
|
979
|
1
|
return O_OF_W(4 * n + 3) +
|
980
|
1
|
utilMax(2,
|
981
|
|
ecpIsOnA_deep(n, f_deep),
|
982
|
|
zzSqr_deep(n));
|
983
|
|
}
|
984
|
|
|
985
|
1
|
bool_t ecpIsSafeGroup(const ec_o* ec, size_t mov_threshold, void* stack)
|
986
|
|
{
|
987
|
1
|
size_t n1 = ec->f->n + 1;
|
988
|
|
// переменные в stack
|
989
|
1
|
word* t1 = (word*)stack;
|
990
|
1
|
word* t2 = t1 + n1;
|
991
|
1
|
stack = t2 + n1;
|
992
|
|
// pre
|
993
|
1
|
ASSERT(ecIsOperable(ec));
|
994
|
1
|
ASSERT(ecIsOperableGroup(ec));
|
995
|
|
// order -- простое?
|
996
|
1
|
n1 = wwWordSize(ec->order, n1);
|
997
|
1
|
if (!priIsPrime(ec->order, n1, stack))
|
998
|
0
|
return FALSE;
|
999
|
|
// order == p?
|
1000
|
1
|
if (wwCmp2(ec->f->mod, ec->f->n, ec->order, n1) == 0)
|
1001
|
0
|
return FALSE;
|
1002
|
|
// проверка MOV
|
1003
|
1
|
if (mov_threshold)
|
1004
|
|
{
|
1005
|
1
|
zzMod(t1, ec->f->mod, ec->f->n, ec->order, n1, stack);
|
1006
|
1
|
wwCopy(t2, t1, n1);
|
1007
|
1
|
if (wwCmpW(t2, n1, 1) == 0)
|
1008
|
0
|
return FALSE;
|
1009
|
1
|
while (--mov_threshold)
|
1010
|
|
{
|
1011
|
1
|
zzMulMod(t2, t2, t1, ec->order, n1, stack);
|
1012
|
1
|
if (wwCmpW(t2, n1, 1) == 0)
|
1013
|
0
|
return FALSE;
|
1014
|
|
}
|
1015
|
|
}
|
1016
|
|
// все нормально
|
1017
|
1
|
return TRUE;
|
1018
|
|
}
|
1019
|
|
|
1020
|
1
|
size_t ecpIsSafeGroup_deep(size_t n)
|
1021
|
|
{
|
1022
|
1
|
const size_t n1 = n + 1;
|
1023
|
1
|
return O_OF_W(2 * n1) +
|
1024
|
1
|
utilMax(3,
|
1025
|
|
priIsPrime_deep(n1),
|
1026
|
|
zzMod_deep(n, n1),
|
1027
|
|
zzMulMod_deep(n1));
|
1028
|
|
}
|
1029
|
|
|
1030
|
|
/*
|
1031
|
|
*******************************************************************************
|
1032
|
|
Арифметика аффинных точек
|
1033
|
|
|
1034
|
|
Сложение A <- A + A:
|
1035
|
|
1D + 1S + 1M + 6add \approx 102M
|
1036
|
|
|
1037
|
|
Удвоение A <- 2A:
|
1038
|
|
1D + 2S + 1M + 5add + 1*3 + 1*2 \approx 103M
|
1039
|
|
*******************************************************************************
|
1040
|
|
*/
|
1041
|
|
|
1042
|
1
|
bool_t ecpIsOnA(const word a[], const ec_o* ec, void* stack)
|
1043
|
|
{
|
1044
|
1
|
const size_t n = ec->f->n;
|
1045
|
|
// переменные в stack
|
1046
|
1
|
word* t1 = (word*)stack;
|
1047
|
1
|
word* t2 = t1 + n;
|
1048
|
1
|
stack = t2 + n;
|
1049
|
|
// pre
|
1050
|
1
|
ASSERT(ecIsOperable(ec));
|
1051
|
|
// xa, ya \in ec->f?
|
1052
|
1
|
if (!zmIsIn(ecX(a), ec->f) || !zmIsIn(ecY(a, n), ec->f))
|
1053
|
0
|
return FALSE;
|
1054
|
|
// t1 <- (xa^2 + A)xa + B
|
1055
|
1
|
qrSqr(t1, ecX(a), ec->f, stack);
|
1056
|
1
|
zmAdd(t1, t1, ec->A, ec->f);
|
1057
|
1
|
qrMul(t1, t1, ecX(a), ec->f, stack);
|
1058
|
1
|
zmAdd(t1, t1, ec->B, ec->f);
|
1059
|
|
// t2 <- ya^2
|
1060
|
1
|
qrSqr(t2, ecY(a, n), ec->f, stack);
|
1061
|
|
// t1 == t2?
|
1062
|
1
|
return qrCmp(t1, t2, ec->f) == 0;
|
1063
|
|
}
|
1064
|
|
|
1065
|
1
|
size_t ecpIsOnA_deep(size_t n, size_t f_deep)
|
1066
|
|
{
|
1067
|
1
|
return O_OF_W(2 * n) + f_deep;
|
1068
|
|
}
|
1069
|
|
|
1070
|
0
|
void ecpNegA(word b[], const word a[], const ec_o* ec)
|
1071
|
|
{
|
1072
|
0
|
const size_t n = ec->f->n;
|
1073
|
|
// pre
|
1074
|
0
|
ASSERT(ecIsOperable(ec));
|
1075
|
0
|
ASSERT(ecpSeemsOnA(a, ec));
|
1076
|
0
|
ASSERT(wwIsSameOrDisjoint(a, b, 3 * n));
|
1077
|
|
// (xb, yb) <- (xa, -ya)
|
1078
|
0
|
qrCopy(ecX(b), ecX(a), ec->f);
|
1079
|
0
|
zmNeg(ecY(b, n), ecY(a, n), ec->f);
|
1080
|
|
}
|
1081
|
|
|
1082
|
0
|
bool_t ecpAddAA(word c[], const word a[], const word b[], const ec_o* ec,
|
1083
|
|
void* stack)
|
1084
|
|
{
|
1085
|
0
|
const size_t n = ec->f->n;
|
1086
|
|
// переменные в stack
|
1087
|
0
|
word* t1 = (word*)stack;
|
1088
|
0
|
word* t2 = t1 + n;
|
1089
|
0
|
word* t3 = t2 + n;
|
1090
|
0
|
stack = t3 + n;
|
1091
|
|
// pre
|
1092
|
0
|
ASSERT(ecIsOperable(ec));
|
1093
|
0
|
ASSERT(ecpSeemsOnA(a, ec));
|
1094
|
0
|
ASSERT(ecpSeemsOnA(b, ec));
|
1095
|
|
// xa != xb?
|
1096
|
0
|
if (qrCmp(ecX(a), ecX(b), ec->f) != 0)
|
1097
|
|
{
|
1098
|
|
// t1 <- xa - xb
|
1099
|
0
|
zmSub(t1, ecX(a), ecX(b), ec->f);
|
1100
|
|
// t2 <- ya - yb
|
1101
|
0
|
zmSub(t2, ecY(a, n), ecY(b, n), ec->f);
|
1102
|
|
}
|
1103
|
|
else
|
1104
|
|
{
|
1105
|
|
// ya != yb или yb == 0 => a == -b => a + b == O
|
1106
|
0
|
if (qrCmp(ecY(a, n), ecY(b, n), ec->f) != 0 ||
|
1107
|
0
|
qrIsZero(ecY(b, n), ec->f))
|
1108
|
0
|
return FALSE;
|
1109
|
|
// t2 <- 3 xa^2 + A
|
1110
|
0
|
qrSqr(t1, ecX(a), ec->f, stack);
|
1111
|
0
|
gfpDouble(t2, t1, ec->f);
|
1112
|
0
|
zmAdd(t2, t2, t1, ec->f);
|
1113
|
0
|
zmAdd(t2, t2, ec->A, ec->f);
|
1114
|
|
// t1 <- 2 ya
|
1115
|
0
|
gfpDouble(t1, ecY(a, n), ec->f);
|
1116
|
|
}
|
1117
|
|
// t2 <- t2 / t1 = \lambda
|
1118
|
0
|
qrDiv(t2, t2, t1, ec->f, stack);
|
1119
|
|
// t1 <- \lambda^2 - xa - xb = xc
|
1120
|
0
|
qrSqr(t1, t2, ec->f, stack);
|
1121
|
0
|
zmSub(t1, t1, ecX(a), ec->f);
|
1122
|
0
|
zmSub(t1, t1, ecX(b), ec->f);
|
1123
|
|
// t3 <- xa - xc
|
1124
|
0
|
zmSub(t3, ecX(a), t1, ec->f);
|
1125
|
|
// t2 <- \lambda(xa - xc) - ya
|
1126
|
0
|
qrMul(t2, t2, t3, ec->f, stack);
|
1127
|
0
|
zmSub(t2, t2, ecY(a, n), ec->f);
|
1128
|
|
// выгрузить результат
|
1129
|
0
|
qrCopy(ecX(c), t1, ec->f);
|
1130
|
0
|
qrCopy(ecY(c, n), t2, ec->f);
|
1131
|
0
|
return TRUE;
|
1132
|
|
}
|
1133
|
|
|
1134
|
0
|
size_t ecpAddAA_deep(size_t n, size_t f_deep)
|
1135
|
|
{
|
1136
|
0
|
return O_OF_W(3 * n) + f_deep;
|
1137
|
|
}
|
1138
|
|
|
1139
|
1
|
bool_t ecpSubAA(word c[], const word a[], const word b[], const ec_o* ec,
|
1140
|
|
void* stack)
|
1141
|
|
{
|
1142
|
1
|
const size_t n = ec->f->n;
|
1143
|
|
// переменные в stack
|
1144
|
1
|
word* t1 = (word*)stack;
|
1145
|
1
|
word* t2 = t1 + n;
|
1146
|
1
|
word* t3 = t2 + n;
|
1147
|
1
|
stack = t3 + n;
|
1148
|
|
// pre
|
1149
|
1
|
ASSERT(ecIsOperable(ec));
|
1150
|
1
|
ASSERT(ecpSeemsOnA(a, ec));
|
1151
|
1
|
ASSERT(ecpSeemsOnA(b, ec));
|
1152
|
|
// xa != xb?
|
1153
|
1
|
if (qrCmp(ecX(a), ecX(b), ec->f) != 0)
|
1154
|
|
{
|
1155
|
|
// t1 <- xa - xb
|
1156
|
1
|
zmSub(t1, ecX(a), ecX(b), ec->f);
|
1157
|
|
// t2 <- ya + yb
|
1158
|
1
|
zmAdd(t2, ecY(a, n), ecY(b, n), ec->f);
|
1159
|
|
}
|
1160
|
|
else
|
1161
|
|
{
|
1162
|
|
// ya == yb => a == b => a - b == O
|
1163
|
0
|
if (qrCmp(ecY(a, n), ecY(b, n), ec->f) == 0)
|
1164
|
0
|
return FALSE;
|
1165
|
|
// здесь должно быть a == -b => a - b = 2a
|
1166
|
|
// t2 <- 3 xa^2 + A
|
1167
|
0
|
qrSqr(t1, ecX(a), ec->f, stack);
|
1168
|
0
|
gfpDouble(t2, t1, ec->f);
|
1169
|
0
|
zmAdd(t2, t2, t1, ec->f);
|
1170
|
0
|
zmAdd(t2, t2, ec->A, ec->f);
|
1171
|
|
// t1 <- 2 ya
|
1172
|
0
|
gfpDouble(t1, ecY(a, n), ec->f);
|
1173
|
|
}
|
1174
|
|
// t2 <- t2 / t1 = \lambda
|
1175
|
1
|
qrDiv(t2, t2, t1, ec->f, stack);
|
1176
|
|
// t1 <- \lambda^2 - xa - xb = xc
|
1177
|
1
|
qrSqr(t1, t2, ec->f, stack);
|
1178
|
1
|
zmSub(t1, t1, ecX(a), ec->f);
|
1179
|
1
|
zmSub(t1, t1, ecX(b), ec->f);
|
1180
|
|
// t3 <- xa - xc
|
1181
|
1
|
zmSub(t3, ecX(a), t1, ec->f);
|
1182
|
|
// t2 <- \lambda(xa - xc) - ya
|
1183
|
1
|
qrMul(t2, t2, t3, ec->f, stack);
|
1184
|
1
|
zmSub(t2, t2, ecY(a, n), ec->f);
|
1185
|
|
// выгрузить результат
|
1186
|
1
|
qrCopy(ecX(c), t1, ec->f);
|
1187
|
1
|
qrCopy(ecY(c, n), t2, ec->f);
|
1188
|
1
|
return TRUE;
|
1189
|
|
}
|
1190
|
|
|
1191
|
1
|
size_t ecpSubAA_deep(size_t n, size_t f_deep)
|
1192
|
|
{
|
1193
|
1
|
return O_OF_W(3 * n) + f_deep;
|
1194
|
|
}
|
1195
|
|
|
1196
|
|
/*
|
1197
|
|
*******************************************************************************
|
1198
|
|
Алгоритм SWU
|
1199
|
|
|
1200
|
|
\todo Регуляризировать (qrIsUnitySafe).
|
1201
|
|
*******************************************************************************
|
1202
|
|
*/
|
1203
|
|
|
1204
|
1
|
void ecpSWU(word b[], const word a[], const ec_o* ec, void* stack)
|
1205
|
|
{
|
1206
|
1
|
const size_t n = ec->f->n;
|
1207
|
|
register size_t mask;
|
1208
|
|
// переменные в stack [x2 после x1, s после y!]
|
1209
|
1
|
word* t = (word*)stack;
|
1210
|
1
|
word* x1 = t + n;
|
1211
|
1
|
word* x2 = x1 + n;
|
1212
|
1
|
word* y = x2 + n;
|
1213
|
1
|
word* s = y + n;
|
1214
|
1
|
stack = s + n;
|
1215
|
|
// pre
|
1216
|
1
|
ASSERT(ecIsOperable(ec));
|
1217
|
1
|
ASSERT(zmIsIn(a, ec->f));
|
1218
|
1
|
ASSERT(wwGetBits(ec->f->mod, 0, 2) == 3);
|
1219
|
1
|
ASSERT(!qrIsZero(ec->A, ec->f) && !qrIsZero(ec->B, ec->f));
|
1220
|
|
// t <- -a^2
|
1221
|
1
|
qrSqr(t, a, ec->f, stack);
|
1222
|
1
|
zmNeg(t, t, ec->f);
|
1223
|
|
// s <- p - 2
|
1224
|
1
|
wwCopy(s, ec->f->mod, n);
|
1225
|
1
|
zzSubW2(s, n, 2);
|
1226
|
|
// x1 <- -B(1 + t + t^2)(A(t + t^2))^{p - 2}
|
1227
|
1
|
qrSqr(x2, t, ec->f, stack);
|
1228
|
1
|
qrAdd(x2, x2, t, ec->f);
|
1229
|
1
|
qrMul(x1, x2, ec->A, ec->f, stack);
|
1230
|
1
|
qrPower(x1, x1, s, n, ec->f, stack);
|
1231
|
1
|
qrAddUnity(x2, x2, ec->f);
|
1232
|
1
|
qrMul(x1, x1, x2, ec->f, stack);
|
1233
|
1
|
qrMul(x1, x1, ec->B, ec->f, stack);
|
1234
|
1
|
zmNeg(x1, x1, ec->f);
|
1235
|
|
// y <- (x1)^3 + A x1 + B
|
1236
|
1
|
qrSqr(x2, x1, ec->f, stack);
|
1237
|
1
|
qrMul(x2, x2, x1, ec->f, stack);
|
1238
|
1
|
qrMul(y, x1, ec->A, ec->f, stack);
|
1239
|
1
|
qrAdd(y, y, x2, ec->f);
|
1240
|
1
|
qrAdd(y, y, ec->B, ec->f);
|
1241
|
|
// x2 <- x1 t
|
1242
|
1
|
qrMul(x2, x1, t, ec->f, stack);
|
1243
|
|
// t <- y^{(p - 1) - (p + 1) / 4} = y^{s - (p - 3) / 4}
|
1244
|
1
|
wwCopy(t, ec->f->mod, n);
|
1245
|
1
|
wwShLo(t, n, 2);
|
1246
|
1
|
zzSub(s, s, t, n);
|
1247
|
1
|
qrPower(t, y, s, n, ec->f, stack);
|
1248
|
|
// s <- a^3 y
|
1249
|
1
|
qrSqr(s, a, ec->f, stack);
|
1250
|
1
|
qrMul(s, s, a, ec->f, stack);
|
1251
|
1
|
qrMul(s, s, y, ec->f, stack);
|
1252
|
|
// mask <- t^2 y == 1 ? 0 : -1;
|
1253
|
1
|
qrSqr(b, t, ec->f, stack);
|
1254
|
1
|
qrMul(b, b, y, ec->f, stack);
|
1255
|
1
|
mask = qrIsUnity(b, ec->f) - SIZE_1;
|
1256
|
|
// b <- mask == 0 ? (x1, t y) : (x2, t s)
|
1257
|
1
|
qrCopy(ecX(b), x1 + (mask & n), ec->f);
|
1258
|
1
|
qrMul(ecY(b, n), t, y + (mask & n), ec->f, stack);
|
1259
|
|
// очистка
|
1260
|
1
|
mask = 0;
|
1261
|
|
}
|
1262
|
|
|
1263
|
1
|
size_t ecpSWU_deep(size_t n, size_t f_deep)
|
1264
|
|
{
|
1265
|
1
|
return O_OF_W(5 * n) +
|
1266
|
1
|
utilMax(2,
|
1267
|
|
f_deep,
|
1268
|
|
qrPower_deep(n, n, f_deep));
|
1269
|
|
}
|