1
|
|
/*
|
2
|
|
*******************************************************************************
|
3
|
|
\file ec2.c
|
4
|
|
\brief Elliptic curves over binary fields
|
5
|
|
\project bee2 [cryptographic library]
|
6
|
|
\author (C) Sergey Agievich [agievich@{bsu.by|gmail.com}]
|
7
|
|
\created 2012.06.26
|
8
|
|
\version 2014.07.15
|
9
|
|
\license This program is released under the GNU General Public License
|
10
|
|
version 3. See Copyright Notices in bee2/info.h.
|
11
|
|
*******************************************************************************
|
12
|
|
*/
|
13
|
|
|
14
|
|
#include "bee2/core/mem.h"
|
15
|
|
#include "bee2/core/stack.h"
|
16
|
|
#include "bee2/core/util.h"
|
17
|
|
#include "bee2/math/ec2.h"
|
18
|
|
#include "bee2/math/gf2.h"
|
19
|
|
#include "bee2/math/pri.h"
|
20
|
|
#include "bee2/math/ww.h"
|
21
|
|
#include "bee2/math/zz.h"
|
22
|
|
|
23
|
|
/*
|
24
|
|
*******************************************************************************
|
25
|
|
Общие положения
|
26
|
|
|
27
|
|
Ссылки на все реализованные алгоритмы имеются на сайте
|
28
|
|
http://www.hyperelliptic.org/efd. Там же можно найти соглашения по
|
29
|
|
обозначению сложности алгоритмов. В этих обозначениях фигурируют
|
30
|
|
следующие формальные выражения:
|
31
|
|
add -- сложение или вычитание в GF(2^m),
|
32
|
|
c -- умножение на малую константу c в GF(2^m),
|
33
|
|
*A -- умножение на коэффициент A в GF(2^m),
|
34
|
|
*B -- умножение на коэффициент B в GF(2^m),
|
35
|
|
S -- возведение в квадрат в GF(2^m),
|
36
|
|
M -- умножение в GF(2^m),
|
37
|
|
D -- деление в GF(2^m).
|
38
|
|
|
39
|
|
При общей оценке сложности считается, что 1D = 24M, 1*B = 1M и 1S = 0M.
|
40
|
|
Аддитивные операции игнорируются. В общем случае 1*A = 1M, но в наиболее
|
41
|
|
распространенных на практике случаях A \in {0, 1} и 1*A = 0M.
|
42
|
|
|
43
|
|
\warning Соотношение 1D = 24M получено экспериментальным путем
|
44
|
|
на платформе x86 и возможно требует пересмотра.
|
45
|
|
На упомянутом сайте http://www.hyperelliptic.org/efd используется другое
|
46
|
|
соотношение: 1D = 10M. Считаем его слишком оптимистичным
|
47
|
|
(по отношению к D).
|
48
|
|
|
49
|
|
Используются обозначения:
|
50
|
|
A <- A + A -- сложение аффинных точек,
|
51
|
|
A <- 2A -- удвоение аффинной точки;
|
52
|
|
P <- P + P -- сложение проективных точек;
|
53
|
|
P <- P + A -- добавление к проективной точке аффинной;
|
54
|
|
P <- 2P -- удвоение проективной точки;
|
55
|
|
P <- 2A -- удвоение аффинной точки с переходом к проективным координатам.
|
56
|
|
*******************************************************************************
|
57
|
|
*/
|
58
|
|
|
59
|
|
#define ec2SeemsOnA(a, ec)\
|
60
|
|
(gf2IsIn(ecX(a), (ec)->f) && gf2IsIn(ecY(a, (ec)->f->n), (ec)->f))
|
61
|
|
|
62
|
|
#define ec2SeemsOn3(a, ec)\
|
63
|
|
(ec2SeemsOnA(a, ec) && gf2IsIn(ecZ(a, (ec)->f->n), (ec)->f))
|
64
|
|
|
65
|
|
/*
|
66
|
|
*******************************************************************************
|
67
|
|
Кривая в проективных координатах Лопеса -- Дахаба (LD):
|
68
|
|
x = X / Z, y = Y / Z^2,
|
69
|
|
O = (1 : 0 : 0),
|
70
|
|
-(X : Y : Z) = (X : ZX + Y : Z).
|
71
|
|
|
72
|
|
\warning Ошибка в книге [Hankerson D., Menezes A., Vanstone S. Guide to
|
73
|
|
Elliptic Curve Cryptography, Springer, 2004] при определении обратной
|
74
|
|
точки в LD-координатах.
|
75
|
|
|
76
|
|
В функции ec2DblLD() выполняется удвоение P <- 2P. Реализован алгоритм
|
77
|
|
dbl-2005-l [Lange, 2005]. Сложность алгоритма:
|
78
|
|
4M + 4S + 1*A + 5add \approx 5M,
|
79
|
|
причем умножение на A не выполняется, если A \in {0, 1}.
|
80
|
|
|
81
|
|
\todo Ссравнить с алгоритмом dbl-2005-dl.
|
82
|
|
|
83
|
|
В функции ec2DblALD() выполняется удвоение P <- 2A (Z-координата
|
84
|
|
проективной точки равняется 1). Реализован алгоритм
|
85
|
|
mdbl-2005-dl [Doche-Lange, 2005]. Сложность алгоритма:
|
86
|
|
1M + 3S + 1*A + 1*B + 4add \approx 3M.
|
87
|
|
причем умножение на A не выполняется, если A \in {0, 1}.
|
88
|
|
|
89
|
|
В функции ec2AddLD() выполняется сложение P <- P + P.
|
90
|
|
Реализован алгоритм add-2005-dl [Doche-Lange-Takagi, 2005].
|
91
|
|
Сложность алгоритма:
|
92
|
|
13M + 4S + 9add \approx 13M.
|
93
|
|
|
94
|
|
В функции ec2AddALD() выполняется сложение P <- P + A (Z-координата
|
95
|
|
второго слагаемого равняется 1).
|
96
|
|
Реализован алгоритм madd-2005-dl [Doche, Lange, Al-Daoude, 2005].
|
97
|
|
Сложность алгоритма:
|
98
|
|
8M + 5S + 1*A + 9add \approx 9M,
|
99
|
|
причем умножение на A не выполняется, если A \in {0, 1}.
|
100
|
|
|
101
|
|
Целевые функции ci(l), определенные в описании реализации ecMul() в ec.c,
|
102
|
|
принимают следующий вид (считаем, что коэффициент A \in {0, 1}):
|
103
|
|
c1(l) = l/3 8;
|
104
|
|
c2(l, w) = 26 + (2^{w-2} - 2)26 + l/(w + 1) 8;
|
105
|
|
c3(l, w) = 2 + (2^{w-2} - 2)13 + l/(w + 1) 13.
|
106
|
|
|
107
|
|
Расчеты показывают, что
|
108
|
|
с1(l) <= min_w c2(l), l <= 39,
|
109
|
|
min_w c2(l, w) <= min_w c3(l, w).
|
110
|
|
Поэтому для практически используемых размерностей l (39 <= l)
|
111
|
|
первая и третья стратегии являются проигрышными. Реализована только стратегия 2.
|
112
|
|
|
113
|
|
\todo Реализовать быстрые формулы для особенных B:
|
114
|
|
B = 1 (кривые Коблица), известен \sqrt{B}.
|
115
|
|
|
116
|
|
\todo Реализовать редакции функций с A \in {0, 1}.
|
117
|
|
|
118
|
|
\todo Исследовать расширенные LD-координаты (дополнительно поддерживается Z^2).
|
119
|
|
*******************************************************************************
|
120
|
|
*/
|
121
|
|
|
122
|
|
// [3n]b <- [2n]a (P <- A)
|
123
|
1
|
static bool_t ec2FromALD(word b[], const word a[], const ec_o* ec,
|
124
|
|
void* stack)
|
125
|
|
{
|
126
|
1
|
const size_t n = ec->f->n;
|
127
|
|
// pre
|
128
|
1
|
ASSERT(ecIsOperable(ec) && ec->d == 3);
|
129
|
1
|
ASSERT(ec2SeemsOnA(a, ec));
|
130
|
1
|
ASSERT(a == b || wwIsDisjoint2(a, 2 * n, b, 3 * n));
|
131
|
|
// xb <- xa
|
132
|
1
|
qrCopy(ecX(b), ecX(a), ec->f);
|
133
|
|
// yb <- ya
|
134
|
1
|
qrCopy(ecY(b, n), ecY(a, n), ec->f);
|
135
|
|
// zb <- 1
|
136
|
1
|
qrSetUnity(ecZ(b, n), ec->f);
|
137
|
1
|
return TRUE;
|
138
|
|
}
|
139
|
|
|
140
|
|
// [2n]b <- [3n]a (A <- P)
|
141
|
1
|
static bool_t ec2ToALD(word b[], const word a[], const ec_o* ec, void* stack)
|
142
|
|
{
|
143
|
1
|
const size_t n = ec->f->n;
|
144
|
|
// переменные в stack
|
145
|
1
|
word* t1 = (word*)stack;
|
146
|
1
|
stack = t1 + n;
|
147
|
|
// pre
|
148
|
1
|
ASSERT(ecIsOperable(ec) && ec->d == 3);
|
149
|
1
|
ASSERT(ec2SeemsOn3(a, ec));
|
150
|
1
|
ASSERT(a == b || wwIsDisjoint2(a, 3 * n, b, 2 * n));
|
151
|
|
// a == O => b <- O
|
152
|
1
|
if (qrIsZero(ecZ(a, n), ec->f))
|
153
|
1
|
return FALSE;
|
154
|
|
// t1 <- za^{-1}
|
155
|
1
|
qrInv(t1, ecZ(a, n), ec->f, stack);
|
156
|
|
// xb <- xa t1
|
157
|
1
|
qrMul(ecX(b), ecX(a), t1, ec->f, stack);
|
158
|
|
// t1 <- t1^2
|
159
|
1
|
qrSqr(t1, t1, ec->f, stack);
|
160
|
|
// yb <- ya t1
|
161
|
1
|
qrMul(ecY(b, n), ecY(a, n), t1, ec->f, stack);
|
162
|
|
// b != O
|
163
|
1
|
return TRUE;
|
164
|
|
}
|
165
|
|
|
166
|
1
|
static size_t ec2ToALD_deep(size_t n, size_t f_deep)
|
167
|
|
{
|
168
|
1
|
return O_OF_W(n) + f_deep;
|
169
|
|
}
|
170
|
|
|
171
|
|
// [3n]b <- -[3n]a (P <- -P)
|
172
|
0
|
static void ec2NegLD(word b[], const word a[], const ec_o* ec, void* stack)
|
173
|
|
{
|
174
|
0
|
const size_t n = ec->f->n;
|
175
|
|
// переменные в stack
|
176
|
0
|
word* t1 = (word*)stack;
|
177
|
0
|
stack = t1 + n;
|
178
|
|
// pre
|
179
|
0
|
ASSERT(ecIsOperable(ec) && ec->d == 3);
|
180
|
0
|
ASSERT(ec2SeemsOn3(a, ec));
|
181
|
0
|
ASSERT(wwIsSameOrDisjoint(a, b, 3 * n));
|
182
|
|
// t1 <- xa * za
|
183
|
0
|
qrMul(t1, ecX(a), ecZ(a, n), ec->f, stack);
|
184
|
|
// b <- (xa, ya + t1, za)
|
185
|
0
|
wwCopy(b, a, 3 * n);
|
186
|
0
|
gf2Add2(ecY(b, n), t1, ec->f);
|
187
|
|
}
|
188
|
|
|
189
|
1
|
static size_t ec2NegLD_deep(size_t n, size_t f_deep)
|
190
|
|
{
|
191
|
1
|
return O_OF_W(n) + f_deep;
|
192
|
|
}
|
193
|
|
|
194
|
|
// [3n]b <- 2[3n]a (P <- 2P)
|
195
|
1
|
static void ec2DblLD(word b[], const word a[], const ec_o* ec, void* stack)
|
196
|
|
{
|
197
|
1
|
const size_t n = ec->f->n;
|
198
|
|
// переменные в stack
|
199
|
1
|
word* t1 = (word*)stack;
|
200
|
1
|
word* t2 = t1 + n;
|
201
|
1
|
stack = t2 + n;
|
202
|
|
// pre
|
203
|
1
|
ASSERT(ecIsOperable(ec) && ec->d == 3);
|
204
|
1
|
ASSERT(ec2SeemsOn3(a, ec));
|
205
|
1
|
ASSERT(wwIsSameOrDisjoint(a, b, 3 * n));
|
206
|
|
// za == 0 или xa == 0? => b <- O
|
207
|
1
|
if (qrIsZero(ecZ(a, n), ec->f) || qrIsZero(ecX(a), ec->f))
|
208
|
|
{
|
209
|
1
|
qrSetZero(ecZ(b, n), ec->f);
|
210
|
1
|
return;
|
211
|
|
}
|
212
|
|
// t1 <- xa za [A]
|
213
|
1
|
qrMul(t1, ecX(a), ecZ(a, n), ec->f, stack);
|
214
|
|
// zb <- t1^2 [A^2]
|
215
|
1
|
qrSqr(ecZ(b, n), t1, ec->f, stack);
|
216
|
|
// t2 <- xa^2 [B]
|
217
|
1
|
qrSqr(t2, ecX(a), ec->f, stack);
|
218
|
|
// xb <- ya + t2 [C]
|
219
|
1
|
gf2Add(ecX(b), ecY(a, n), t2, ec->f);
|
220
|
|
// t1 <- t1 xb [D]
|
221
|
1
|
qrMul(t1, t1, ecX(b), ec->f, stack);
|
222
|
|
// xb <- xb^2 + t1 [C^2 + D]
|
223
|
1
|
qrSqr(ecX(b), ecX(b), ec->f, stack);
|
224
|
1
|
gf2Add2(ecX(b), t1, ec->f);
|
225
|
|
// t1 <- t1 + zb [Z3 + D]
|
226
|
1
|
gf2Add2(t1, ecZ(b, n), ec->f);
|
227
|
|
// yb <- t2^2 zb [B^2 Z3]
|
228
|
1
|
qrSqr(ecY(b, n), t2, ec->f, stack);
|
229
|
1
|
qrMul(ecY(b, n), ecY(b, n), ecZ(b, n), ec->f, stack);
|
230
|
|
// xb <- xb + A * zb [C^2 + D + a2 * Z3]
|
231
|
1
|
if (qrIsUnity(ec->A, ec->f))
|
232
|
1
|
gf2Add2(ecX(b), ecZ(b, n), ec->f);
|
233
|
1
|
else if (!qrIsZero(ec->A, ec->f))
|
234
|
|
{
|
235
|
0
|
qrMul(t2, ec->A, ecZ(b, n), ec->f, stack);
|
236
|
0
|
gf2Add2(ecX(b), t2, ec->f);
|
237
|
|
}
|
238
|
|
// t1 <- t1 xb [(Z3 + D)X3]
|
239
|
1
|
qrMul(t1, t1, ecX(b), ec->f, stack);
|
240
|
|
// yb <- yb + t1 [(Z3 + D)X3 + B^2 Z3]
|
241
|
1
|
gf2Add2(ecY(b, n), t1, ec->f);
|
242
|
|
}
|
243
|
|
|
244
|
1
|
static size_t ec2DblLD_deep(size_t n, size_t f_deep)
|
245
|
|
{
|
246
|
1
|
return O_OF_W(2 * n) + f_deep;
|
247
|
|
}
|
248
|
|
|
249
|
|
// [3n]b <- 2[2n]a (P <- 2A)
|
250
|
1
|
static void ec2DblALD(word b[], const word a[], const ec_o* ec, void* stack)
|
251
|
|
{
|
252
|
1
|
const size_t n = ec->f->n;
|
253
|
|
// переменные в stack
|
254
|
1
|
word* t1 = (word*)stack;
|
255
|
1
|
stack = t1 + n;
|
256
|
|
// pre
|
257
|
1
|
ASSERT(ecIsOperable(ec) && ec->d == 3);
|
258
|
1
|
ASSERT(ec2SeemsOnA(a, ec));
|
259
|
1
|
ASSERT(a == b || wwIsDisjoint2(a, 2 * n, b, 3 * n));
|
260
|
|
// xa == 0? => b <- O
|
261
|
1
|
if (qrIsZero(ecX(a), ec->f))
|
262
|
|
{
|
263
|
0
|
qrSetZero(ecZ(b, n), ec->f);
|
264
|
0
|
return;
|
265
|
|
}
|
266
|
|
// zb <- xa^2 [C]
|
267
|
1
|
qrSqr(ecZ(b, n), ecX(a), ec->f, stack);
|
268
|
|
// xb <- zb^2 + B [C^2 + a6]
|
269
|
1
|
qrSqr(ecX(b), ecZ(b, n), ec->f, stack);
|
270
|
1
|
gf2Add2(ecX(b), ec->B, ec->f);
|
271
|
|
// yb <- ya^2 + B [Y1^2 + a6]
|
272
|
1
|
qrSqr(ecY(b, n), ecY(a, n), ec->f, stack);
|
273
|
1
|
gf2Add2(ecY(b, n), ec->B, ec->f);
|
274
|
|
// yb <- yb + A zb [Y1^2 + a2*Z3 + a6]
|
275
|
1
|
if (qrIsUnity(ec->A, ec->f))
|
276
|
1
|
gf2Add2(ecY(b, n), ecZ(b, n), ec->f);
|
277
|
1
|
else if (!qrIsZero(ec->A, ec->f))
|
278
|
|
{
|
279
|
0
|
qrMul(t1, ec->A, ecZ(b, n), ec->f, stack);
|
280
|
0
|
gf2Add2(ecY(b, n), t1, ec->f);
|
281
|
|
}
|
282
|
|
// yb <- yb xb [(Y1^2 + a2*Z3 + a6) * X3]
|
283
|
1
|
qrMul(ecY(b, n), ecY(b, n), ecX(b), ec->f, stack);
|
284
|
|
// t1 <- B zb [a6 * Z3]
|
285
|
1
|
qrMul(t1, ec->B, ecZ(b, n), ec->f, stack);
|
286
|
|
// yb <- yb + t1 [(Y1^2 + a2*Z3 + a6) * X3 + a6 * Z3]
|
287
|
1
|
gf2Add2(ecY(b, n), t1, ec->f);
|
288
|
|
}
|
289
|
|
|
290
|
1
|
static size_t ec2DblALD_deep(size_t n, size_t f_deep)
|
291
|
|
{
|
292
|
1
|
return O_OF_W(n) + f_deep;
|
293
|
|
}
|
294
|
|
|
295
|
|
// [3n]c <- [3n]a + [3n]b (P <- P + P)
|
296
|
1
|
static void ec2AddLD(word c[], const word a[], const word b[],
|
297
|
|
const ec_o* ec, void* stack)
|
298
|
|
{
|
299
|
1
|
const size_t n = ec->f->n;
|
300
|
|
// переменные в stack
|
301
|
1
|
word* t1 = (word*)stack;
|
302
|
1
|
word* t2 = t1 + n;
|
303
|
1
|
word* t3 = t2 + n;
|
304
|
1
|
word* t4 = t3 + n;
|
305
|
1
|
word* t5 = t4 + n;
|
306
|
1
|
word* t6 = t5 + n;
|
307
|
1
|
stack = t6 + n;
|
308
|
|
// pre
|
309
|
1
|
ASSERT(ecIsOperable(ec) && ec->d == 3);
|
310
|
1
|
ASSERT(ec2SeemsOn3(a, ec));
|
311
|
1
|
ASSERT(ec2SeemsOn3(b, ec));
|
312
|
1
|
ASSERT(wwIsSameOrDisjoint(a, c, 3 * n));
|
313
|
1
|
ASSERT(wwIsSameOrDisjoint(b, c, 3 * n));
|
314
|
|
// a == O => c <- b
|
315
|
1
|
if (qrIsZero(ecZ(a, n), ec->f))
|
316
|
|
{
|
317
|
1
|
wwCopy(c, b, 3 * n);
|
318
|
1
|
return;
|
319
|
|
}
|
320
|
|
// b == O => c <- a
|
321
|
1
|
if (qrIsZero(ecZ(b, n), ec->f))
|
322
|
|
{
|
323
|
0
|
wwCopy(c, a, 3 * n);
|
324
|
0
|
return;
|
325
|
|
}
|
326
|
|
// t1 <- xa zb [A]
|
327
|
1
|
qrMul(t1, ecX(a), ecZ(b, n), ec->f, stack);
|
328
|
|
// t2 <- xb za [B]
|
329
|
1
|
qrMul(t2, ecX(b), ecZ(a, n), ec->f, stack);
|
330
|
|
// t3 <- ya zb^2 [G]
|
331
|
1
|
qrSqr(t3, ecZ(b, n), ec->f, stack);
|
332
|
1
|
qrMul(t3, t3, ecY(a, n), ec->f, stack);
|
333
|
|
// t4 <- yb za^2 [H]
|
334
|
1
|
qrSqr(t4, ecZ(a, n), ec->f, stack);
|
335
|
1
|
qrMul(t4, t4, ecY(b, n), ec->f, stack);
|
336
|
|
// A == B => a == \pm b
|
337
|
1
|
if (qrCmp(t1, t2, ec->f) == 0)
|
338
|
|
{
|
339
|
|
// t3 == t4 => a == b => c <- 2a
|
340
|
1
|
if (qrCmp(t3, t4, ec->f) == 0)
|
341
|
0
|
ec2DblLD(c, a, ec, stack);
|
342
|
|
// t3 != t4 => a == -b => c <- O
|
343
|
|
else
|
344
|
1
|
qrSetZero(ecZ(c, n), ec->f);
|
345
|
1
|
return;
|
346
|
|
}
|
347
|
|
// t5 <- t1 + t2 [E]
|
348
|
1
|
gf2Add(t5, t1, t2, ec->f);
|
349
|
|
// t6 <- t3 + t4 [I]
|
350
|
1
|
gf2Add(t6, t3, t4, ec->f);
|
351
|
|
// t5 <- t5 t6 [J]
|
352
|
1
|
qrMul(t5, t5, t6, ec->f, stack);
|
353
|
|
// xc <- t1^2 [C]
|
354
|
1
|
qrSqr(ecX(c), t1, ec->f, stack);
|
355
|
|
// yc <- t2^2 [D]
|
356
|
1
|
qrSqr(ecY(c, n), t2, ec->f, stack);
|
357
|
|
// t6 <- xc + yc [ec->f]
|
358
|
1
|
gf2Add(t6, ecX(c), ecY(c, n), ec->f);
|
359
|
|
// zc <- t6 za zb [ec->f * Z1 * Z2]
|
360
|
1
|
qrMul(ecZ(c, n), ecZ(a, n), ecZ(b, n), ec->f, stack);
|
361
|
1
|
qrMul(ecZ(c, n), t6, ecZ(c, n), ec->f, stack);
|
362
|
|
// t4 <- t1 (t4 + yc) [A * (H + D)]
|
363
|
1
|
gf2Add2(t4, ecY(c, n), ec->f);
|
364
|
1
|
qrMul(t4, t1, t4, ec->f, stack);
|
365
|
|
// xc <- t2 (xc + t3) + t4 [B * (C + G) + A * (H + D)]
|
366
|
1
|
gf2Add2(ecX(c), t3, ec->f);
|
367
|
1
|
qrMul(ecX(c), t2, ecX(c), ec->f, stack);
|
368
|
1
|
gf2Add2(ecX(c), t4, ec->f);
|
369
|
|
// t1 <- t1 t5 [A * J]
|
370
|
1
|
qrMul(t1, t1, t5, ec->f, stack);
|
371
|
|
// t3 <- t3 t6 [ec->f * G]
|
372
|
1
|
qrMul(t3, t3, t6, ec->f, stack);
|
373
|
|
// t1 <- (t1 + t3) t6 [(A * J + ec->f * G) * ec->f]
|
374
|
1
|
gf2Add2(t1, t3, ec->f);
|
375
|
1
|
qrMul(t1, t1, t6, ec->f, stack);
|
376
|
|
// yc <- (t5 + zc) xc [(J + Z3) * X3]
|
377
|
1
|
gf2Add(ecY(c, n), t5, ecZ(c, n), ec->f);
|
378
|
1
|
qrMul(ecY(c, n), ecY(c, n), ecX(c), ec->f, stack);
|
379
|
|
// yc <- yc + t1 [(A * J + ec->f * G) * ec->f + (J + Z3) * X3]
|
380
|
1
|
gf2Add2(ecY(c, n), t1, ec->f);
|
381
|
|
}
|
382
|
|
|
383
|
1
|
static size_t ec2AddLD_deep(size_t n, size_t f_deep)
|
384
|
|
{
|
385
|
1
|
return O_OF_W(6 * n) +
|
386
|
1
|
utilMax(2,
|
387
|
|
f_deep,
|
388
|
|
ec2DblLD_deep(n, f_deep));
|
389
|
|
}
|
390
|
|
|
391
|
|
// [3n]c <- [3n]a + [2n]b (P <- P + A)
|
392
|
1
|
static void ec2AddALD(word c[], const word a[], const word b[],
|
393
|
|
const ec_o* ec, void* stack)
|
394
|
|
{
|
395
|
1
|
const size_t n = ec->f->n;
|
396
|
|
// переменные в stack
|
397
|
1
|
word* t1 = (word*)stack;
|
398
|
1
|
word* t2 = t1 + n;
|
399
|
1
|
word* t3 = t2 + n;
|
400
|
1
|
word* t4 = t3 + n;
|
401
|
1
|
stack = t4 + n;
|
402
|
|
// pre
|
403
|
1
|
ASSERT(ecIsOperable(ec) && ec->d == 3);
|
404
|
1
|
ASSERT(ec2SeemsOn3(a, ec));
|
405
|
1
|
ASSERT(ec2SeemsOnA(b, ec));
|
406
|
1
|
ASSERT(wwIsSameOrDisjoint(a, c, 3 * n));
|
407
|
1
|
ASSERT(b == c || wwIsDisjoint2(b, 2 * n, c, 3 * n));
|
408
|
|
// a == O => c <- (xb : yb : 1)
|
409
|
1
|
if (qrIsZero(ecZ(a, n), ec->f))
|
410
|
|
{
|
411
|
1
|
qrCopy(ecX(c), ecX(b), ec->f);
|
412
|
1
|
qrCopy(ecY(c, n), ecY(b, n), ec->f);
|
413
|
1
|
qrSetUnity(ecZ(c, n), ec->f);
|
414
|
1
|
return;
|
415
|
|
}
|
416
|
|
// t1 <- ya + yb za^2 [A]
|
417
|
1
|
qrSqr(t1, ecZ(a, n), ec->f, stack);
|
418
|
1
|
qrMul(t1, ecY(b, n), t1, ec->f, stack);
|
419
|
1
|
gf2Add2(t1, ecY(a, n), ec->f);
|
420
|
|
// t2 <- xa + xb za [B]
|
421
|
1
|
qrMul(t2, ecX(b), ecZ(a, n), ec->f, stack);
|
422
|
1
|
gf2Add2(t2, ecX(a), ec->f);
|
423
|
|
// t2 == 0 => a == \pm b
|
424
|
1
|
if (qrIsZero(t2, ec->f))
|
425
|
|
{
|
426
|
|
// t1 == 0 => a == b => c <- 2b
|
427
|
1
|
if (qrIsZero(t1, ec->f))
|
428
|
0
|
ec2DblALD(c, b, ec, stack);
|
429
|
|
// t1 != 0 => a == -b => c <- O
|
430
|
|
else
|
431
|
1
|
qrSetZero(ecZ(c, n), ec->f);
|
432
|
1
|
return;
|
433
|
|
}
|
434
|
|
// t3 <- t2 za [C]
|
435
|
1
|
qrMul(t3, t2, ecZ(a, n), ec->f, stack);
|
436
|
|
// zc <- t3^2 [C^2]
|
437
|
1
|
qrSqr(ecZ(c, n), t3, ec->f, stack);
|
438
|
|
// t4 <- xb zc [D]
|
439
|
1
|
qrMul(t4, ecX(b), ecZ(c, n), ec->f, stack);
|
440
|
|
// yc <- xb + yb [X2 + Y2]
|
441
|
1
|
gf2Add(ecY(c, n), ecX(b), ecY(b, n), ec->f);
|
442
|
|
// xc <- t2^2 + t1 + A t3 [B^2 + A + a2 * C]
|
443
|
1
|
qrSqr(ecX(c), t2, ec->f, stack);
|
444
|
1
|
gf2Add2(ecX(c), t1, ec->f);
|
445
|
1
|
if (qrIsUnity(ec->A, ec->f))
|
446
|
1
|
gf2Add2(ecX(c), t3, ec->f);
|
447
|
1
|
else if (!qrIsZero(ec->A, ec->f))
|
448
|
|
{
|
449
|
0
|
qrMul(t2, ec->A, t3, ec->f, stack);
|
450
|
0
|
gf2Add2(ecX(c), t2, ec->f);
|
451
|
|
}
|
452
|
|
// xc <- xc t3 + t1^2 [C * (A + B^2 + a2 * C) + A^2]
|
453
|
1
|
qrMul(ecX(c), ecX(c), t3, ec->f, stack);
|
454
|
1
|
qrSqr(t2, t1, ec->f, stack);
|
455
|
1
|
gf2Add2(ecX(c), t2, ec->f);
|
456
|
|
// yc <- yc zc^2 [(Y2 + X2) * Z3^2]
|
457
|
1
|
qrSqr(t2, ecZ(c, n), ec->f, stack);
|
458
|
1
|
qrMul(ecY(c, n), ecY(c, n), t2, ec->f, stack);
|
459
|
|
// t4 <- t4 + xc [D + X3]
|
460
|
1
|
gf2Add2(t4, ecX(c), ec->f);
|
461
|
|
// t1 <- t1 t3 + zc [A * C + Z3]
|
462
|
1
|
qrMul(t1, t1, t3, ec->f, stack);
|
463
|
1
|
gf2Add2(t1, ecZ(c, n), ec->f);
|
464
|
|
// t1 <- t1 t4 [(D + X3)(A * C + Z3)]
|
465
|
1
|
qrMul(t1, t1, t4, ec->f, stack);
|
466
|
|
// yc <- yc + t1 [(D + X3)(A * C + Z3) + (Y2 + X2) * Z3^2]
|
467
|
1
|
gf2Add2(ecY(c, n), t1, ec->f);
|
468
|
|
}
|
469
|
|
|
470
|
1
|
static size_t ec2AddALD_deep(size_t n, size_t f_deep)
|
471
|
|
{
|
472
|
1
|
return O_OF_W(4 * n) +
|
473
|
1
|
utilMax(2,
|
474
|
|
f_deep,
|
475
|
|
ec2DblALD_deep(n, f_deep));
|
476
|
|
}
|
477
|
|
|
478
|
|
// [3n]c <- [3n]a - [3n]b (P <- P - P)
|
479
|
1
|
static void ec2SubLD(word c[], const word a[], const word b[],
|
480
|
|
const ec_o* ec, void* stack)
|
481
|
|
{
|
482
|
1
|
const size_t n = ec->f->n;
|
483
|
|
// переменные в stack
|
484
|
1
|
word* t = (word*)stack;
|
485
|
1
|
stack = t + 3 * n;
|
486
|
|
// pre
|
487
|
1
|
ASSERT(ecIsOperable(ec) && ec->d == 3);
|
488
|
1
|
ASSERT(ec2SeemsOn3(a, ec));
|
489
|
1
|
ASSERT(ec2SeemsOn3(b, ec));
|
490
|
1
|
ASSERT(wwIsSameOrDisjoint(a, c, 3 * n));
|
491
|
1
|
ASSERT(wwIsSameOrDisjoint(b, c, 3 * n));
|
492
|
|
// t <- -b
|
493
|
1
|
qrMul(ecY(t, n), ecX(b), ecZ(b, n), ec->f, stack);
|
494
|
1
|
gf2Add2(ecY(t, n), ecY(b, n), ec->f);
|
495
|
1
|
qrCopy(ecX(t), ecX(b), ec->f);
|
496
|
1
|
qrCopy(ecZ(t, n), ecZ(b, n), ec->f);
|
497
|
|
// c <- a + t
|
498
|
1
|
ec2AddLD(c, a, t, ec, stack);
|
499
|
|
}
|
500
|
|
|
501
|
1
|
static size_t ec2SubLD_deep(size_t n, size_t f_deep)
|
502
|
|
{
|
503
|
1
|
return O_OF_W(3 * n) +
|
504
|
1
|
utilMax(2,
|
505
|
|
f_deep,
|
506
|
|
ec2AddLD_deep(n, f_deep));
|
507
|
|
}
|
508
|
|
|
509
|
|
// [3n]c <- [3n]a - [2n]b (P <- P - A)
|
510
|
1
|
static void ec2SubALD(word c[], const word a[], const word b[],
|
511
|
|
const ec_o* ec, void* stack)
|
512
|
|
{
|
513
|
1
|
const size_t n = ec->f->n;
|
514
|
|
// переменные в stack
|
515
|
1
|
word* t = (word*)stack;
|
516
|
1
|
stack = t + 2 * n;
|
517
|
|
// pre
|
518
|
1
|
ASSERT(ecIsOperable(ec) && ec->d == 3);
|
519
|
1
|
ASSERT(ec2SeemsOn3(a, ec));
|
520
|
1
|
ASSERT(ec2SeemsOnA(b, ec));
|
521
|
1
|
ASSERT(wwIsSameOrDisjoint(a, c, 3 * n));
|
522
|
1
|
ASSERT(b == c || wwIsDisjoint2(b, 2 * n, c, 3 * n));
|
523
|
|
// t <- -b
|
524
|
1
|
wwCopy(t, b, 2 * n);
|
525
|
1
|
gf2Add2(ecY(t, n), ecX(t), ec->f);
|
526
|
|
// c <- a + t
|
527
|
1
|
ec2AddALD(c, a, t, ec, stack);
|
528
|
|
}
|
529
|
|
|
530
|
1
|
static size_t ec2SubALD_deep(size_t n, size_t f_deep)
|
531
|
|
{
|
532
|
1
|
return O_OF_W(2 * n) + ec2AddALD_deep(n, f_deep);
|
533
|
|
}
|
534
|
|
|
535
|
1
|
bool_t ec2CreateLD(ec_o* ec, const qr_o* f, const octet A[], const octet B[],
|
536
|
|
void* stack)
|
537
|
|
{
|
538
|
1
|
ASSERT(memIsValid(ec, sizeof(ec_o)));
|
539
|
1
|
ASSERT(gf2IsOperable(f));
|
540
|
1
|
ASSERT(memIsValid(A, f->no));
|
541
|
1
|
ASSERT(memIsValid(B, f->no));
|
542
|
|
// обнулить
|
543
|
1
|
memSetZero(ec, sizeof(ec_o));
|
544
|
|
// зафикисровать размерности
|
545
|
1
|
ec->d = 3;
|
546
|
|
// запомнить базовое поле
|
547
|
1
|
ec->f = f;
|
548
|
|
// сохранить коэффициенты
|
549
|
1
|
ec->A = (word*)ec->descr;
|
550
|
1
|
ec->B = ec->A + f->n;
|
551
|
1
|
if (!qrFrom(ec->A, A, ec->f, stack) || !qrFrom(ec->B, B, ec->f, stack))
|
552
|
0
|
return FALSE;
|
553
|
|
// подготовить буферы для описания группы точек
|
554
|
1
|
ec->base = ec->B + f->n;
|
555
|
1
|
ec->order = ec->base + 2 * f->n;
|
556
|
|
// настроить интерфейсы
|
557
|
1
|
ec->froma = ec2FromALD;
|
558
|
1
|
ec->toa = ec2ToALD;
|
559
|
1
|
ec->neg = ec2NegLD;
|
560
|
1
|
ec->add = ec2AddLD;
|
561
|
1
|
ec->adda = ec2AddALD;
|
562
|
1
|
ec->sub = ec2SubLD;
|
563
|
1
|
ec->suba = ec2SubALD;
|
564
|
1
|
ec->dbl = ec2DblLD;
|
565
|
1
|
ec->dbla = ec2DblALD;
|
566
|
1
|
ec->deep = utilMax(8,
|
567
|
|
ec2ToALD_deep(f->n, f->deep),
|
568
|
|
ec2NegLD_deep(f->n, f->deep),
|
569
|
|
ec2AddLD_deep(f->n, f->deep),
|
570
|
|
ec2AddALD_deep(f->n, f->deep),
|
571
|
|
ec2SubLD_deep(f->n, f->deep),
|
572
|
|
ec2SubALD_deep(f->n, f->deep),
|
573
|
|
ec2DblLD_deep(f->n, f->deep),
|
574
|
|
ec2DblALD_deep(f->n, f->deep));
|
575
|
|
// настроить заголовок
|
576
|
1
|
ec->hdr.keep = sizeof(ec_o) + O_OF_W(5 * f->n + 1);
|
577
|
1
|
ec->hdr.p_count = 6;
|
578
|
1
|
ec->hdr.o_count = 1;
|
579
|
|
// все нормально
|
580
|
1
|
return TRUE;
|
581
|
|
}
|
582
|
|
|
583
|
1
|
size_t ec2CreateLD_keep(size_t n)
|
584
|
|
{
|
585
|
1
|
return sizeof(ec_o) + O_OF_W(5 * n + 1);
|
586
|
|
}
|
587
|
|
|
588
|
1
|
size_t ec2CreateLD_deep(size_t n, size_t f_deep)
|
589
|
|
{
|
590
|
1
|
return utilMax(8,
|
591
|
|
ec2ToALD_deep(n, f_deep),
|
592
|
|
ec2NegLD_deep(n, f_deep),
|
593
|
|
ec2AddLD_deep(n, f_deep),
|
594
|
|
ec2AddALD_deep(n, f_deep),
|
595
|
|
ec2SubLD_deep(n, f_deep),
|
596
|
|
ec2SubALD_deep(n, f_deep),
|
597
|
|
ec2DblLD_deep(n, f_deep),
|
598
|
|
ec2DblALD_deep(n, f_deep));
|
599
|
|
}
|
600
|
|
|
601
|
|
/*
|
602
|
|
*******************************************************************************
|
603
|
|
Свойства кривой
|
604
|
|
*******************************************************************************
|
605
|
|
*/
|
606
|
|
|
607
|
1
|
bool_t ec2IsValid(const ec_o* ec, void* stack)
|
608
|
|
{
|
609
|
|
// кривая работоспособна? поле ec->f корректно?
|
610
|
|
// ec->deep >= ec->f->deep?
|
611
|
|
// A, B \in ec->f, B != 0?
|
612
|
1
|
return ecIsOperable2(ec) &&
|
613
|
1
|
gf2IsValid(ec->f, stack) &&
|
614
|
1
|
ec->deep >= ec->f->deep &&
|
615
|
1
|
gf2IsIn(ec->A, ec->f) &&
|
616
|
1
|
gf2IsIn(ec->B, ec->f) &&
|
617
|
1
|
!qrIsZero(ec->B, ec->f);
|
618
|
|
}
|
619
|
|
|
620
|
1
|
size_t ec2IsValid_deep(size_t n)
|
621
|
|
{
|
622
|
1
|
return gf2IsValid_deep(n);
|
623
|
|
}
|
624
|
|
|
625
|
1
|
bool_t ec2SeemsValidGroup(const ec_o* ec, void* stack)
|
626
|
|
{
|
627
|
1
|
size_t n = ec->f->n;
|
628
|
|
// переменные в stack
|
629
|
1
|
word* t1 = (word*)stack;
|
630
|
1
|
word* t2 = t1 + n + 1;
|
631
|
1
|
word* t3 = t2 + n + 2;
|
632
|
1
|
stack = t3 + 2 * n;
|
633
|
|
// pre
|
634
|
1
|
ASSERT(ecIsOperable(ec));
|
635
|
|
// ecIsOperableGroup(ec) == TRUE? base \in ec?
|
636
|
1
|
if (!ecIsOperableGroup(ec) ||
|
637
|
1
|
!ec2IsOnA(ec->base, ec, stack))
|
638
|
0
|
return FALSE;
|
639
|
|
// [n + 1]t1 <- 2^m
|
640
|
1
|
wwSetZero(t1, n + 1);
|
641
|
1
|
wwFlipBit(t1, gf2Deg(ec->f));
|
642
|
|
// [n + 2]t2 <- order * cofactor
|
643
|
1
|
t2[n + 1] = zzMulW(t2, ec->order, n + 1, ec->cofactor);
|
644
|
|
// t2 <- |t2 - (2^m + 1)|
|
645
|
1
|
if (zzSubW2(t2, n + 2, 1))
|
646
|
0
|
return FALSE;
|
647
|
1
|
if (wwCmp2(t2, n + 2, t1, n + 1) >= 0)
|
648
|
1
|
t2[n + 1] -= zzSub2(t2, t1, n + 1);
|
649
|
|
else
|
650
|
1
|
zzSub(t2, t1, t2, n + 1);
|
651
|
|
// n <- длина t2
|
652
|
1
|
n = wwWordSize(t2, n + 2);
|
653
|
|
// n > ec->f->n => t2^2 > 4 2^m
|
654
|
1
|
if (n > ec->f->n)
|
655
|
0
|
return FALSE;
|
656
|
|
// [2n]t3 <- ([n]t2)^2
|
657
|
1
|
zzSqr(t3, t2, n, stack);
|
658
|
|
// t1 <- 4 2^m
|
659
|
1
|
wwFlipBit(t1, gf2Deg(ec->f));
|
660
|
1
|
wwFlipBit(t1, gf2Deg(ec->f) + 2);
|
661
|
|
// условие Хассе: t3 <= 4 2^m?
|
662
|
1
|
return wwCmp2(t3, 2 * n, t3, ec->f->n + 1) <= 0;
|
663
|
|
}
|
664
|
|
|
665
|
1
|
size_t ec2SeemsValidGroup_deep(size_t n, size_t f_deep)
|
666
|
|
{
|
667
|
1
|
return O_OF_W(4 * n + 3) +
|
668
|
1
|
utilMax(2,
|
669
|
|
ec2IsOnA_deep(n, f_deep),
|
670
|
|
zzSqr_deep(n));
|
671
|
|
}
|
672
|
|
|
673
|
1
|
bool_t ec2IsSafeGroup(const ec_o* ec, size_t mov_threshold, void* stack)
|
674
|
|
{
|
675
|
1
|
size_t n1 = ec->f->n + 1;
|
676
|
|
// переменные в stack
|
677
|
1
|
word* t1 = (word*)stack;
|
678
|
1
|
word* t2 = t1 + n1;
|
679
|
1
|
stack = t2 + n1;
|
680
|
|
// pre
|
681
|
1
|
ASSERT(ecIsOperable(ec));
|
682
|
1
|
ASSERT(ecIsOperableGroup(ec));
|
683
|
|
// order -- простое?
|
684
|
1
|
n1 = wwWordSize(ec->order, n1);
|
685
|
1
|
if (!priIsPrime(ec->order, n1, stack))
|
686
|
0
|
return FALSE;
|
687
|
|
// t1 <- 2^m
|
688
|
1
|
wwSetZero(t1, ec->f->n + 1);
|
689
|
1
|
wwFlipBit(t1, gf2Deg(ec->f));
|
690
|
|
// order == 2^m?
|
691
|
1
|
if (wwCmp2(t1, ec->f->n + 1, ec->order, n1) == 0)
|
692
|
0
|
return FALSE;
|
693
|
|
// проверка MOV
|
694
|
1
|
if (mov_threshold)
|
695
|
|
{
|
696
|
1
|
zzMod(t1, t1, ec->f->n + 1, ec->order, n1, stack);
|
697
|
1
|
wwCopy(t2, t1, n1);
|
698
|
1
|
if (wwCmpW(t2, n1, 1) == 0)
|
699
|
0
|
return FALSE;
|
700
|
1
|
while (--mov_threshold)
|
701
|
|
{
|
702
|
1
|
zzMulMod(t2, t2, t1, ec->order, n1, stack);
|
703
|
1
|
if (wwCmpW(t2, n1, 1) == 0)
|
704
|
0
|
return FALSE;
|
705
|
|
}
|
706
|
|
}
|
707
|
|
// все нормально
|
708
|
1
|
return TRUE;
|
709
|
|
}
|
710
|
|
|
711
|
1
|
size_t ec2IsSafeGroup_deep(size_t n)
|
712
|
|
{
|
713
|
1
|
const size_t n1 = n + 1;
|
714
|
1
|
return O_OF_W(2 * n1) +
|
715
|
1
|
utilMax(3,
|
716
|
|
priIsPrime_deep(n1),
|
717
|
|
zzMod_deep(n + 1, n1),
|
718
|
|
zzMulMod_deep(n1));
|
719
|
|
}
|
720
|
|
|
721
|
|
/*
|
722
|
|
*******************************************************************************
|
723
|
|
Арифметика аффинных точек
|
724
|
|
|
725
|
|
Сложение A <- A + A:
|
726
|
|
1D + 2M + 1S + 9add \approx 26M
|
727
|
|
|
728
|
|
Удвоение A <- 2A:
|
729
|
|
1D + 2M + 1S + 6add \approx 26M
|
730
|
|
*******************************************************************************
|
731
|
|
*/
|
732
|
|
|
733
|
1
|
bool_t ec2IsOnA(const word a[], const ec_o* ec, void* stack)
|
734
|
|
{
|
735
|
1
|
const size_t n = ec->f->n;
|
736
|
|
// переменные в stack
|
737
|
1
|
word* t1 = (word*)stack;
|
738
|
1
|
word* t2 = t1 + n;
|
739
|
1
|
stack = t2 + n;
|
740
|
|
// pre
|
741
|
1
|
ASSERT(ecIsOperable(ec));
|
742
|
|
// xa, ya \in ec->f?
|
743
|
1
|
if (!ec2SeemsOnA(a, ec))
|
744
|
0
|
return FALSE;
|
745
|
|
// t1 <- (xa + A)xa^2 + B
|
746
|
1
|
qrSqr(t1, ecX(a), ec->f, stack);
|
747
|
1
|
gf2Add(t2, ecX(a), ec->A, ec->f);
|
748
|
1
|
qrMul(t1, t1, t2, ec->f, stack);
|
749
|
1
|
gf2Add2(t1, ec->B, ec->f);
|
750
|
|
// t2 <- ya(ya + xa)
|
751
|
1
|
gf2Add(t2, ecX(a), ecY(a, n), ec->f);
|
752
|
1
|
qrMul(t2, t2, ecY(a, n), ec->f, stack);
|
753
|
|
// t1 == t2?
|
754
|
1
|
return qrCmp(t1, t2, ec->f) == 0;
|
755
|
|
}
|
756
|
|
|
757
|
1
|
size_t ec2IsOnA_deep(size_t n, size_t f_deep)
|
758
|
|
{
|
759
|
1
|
return O_OF_W(2 * n) + f_deep;
|
760
|
|
}
|
761
|
|
|
762
|
1
|
void ec2NegA(word b[], const word a[], const ec_o* ec)
|
763
|
|
{
|
764
|
1
|
const size_t n = ec->f->n;
|
765
|
|
// pre
|
766
|
1
|
ASSERT(ecIsOperable(ec));
|
767
|
1
|
ASSERT(ec2SeemsOnA(a, ec));
|
768
|
1
|
ASSERT(wwIsSameOrDisjoint(a, b, 3 * n));
|
769
|
|
// b <- (xa, ya + xa)
|
770
|
1
|
qrCopy(ecX(b), ecX(a), ec->f);
|
771
|
1
|
gf2Add(ecY(b, n), ecX(a), ecY(a, n), ec->f);
|
772
|
|
}
|
773
|
|
|
774
|
0
|
bool_t ec2AddAA(word c[], const word a[], const word b[], const ec_o* ec,
|
775
|
|
void* stack)
|
776
|
|
{
|
777
|
0
|
const size_t n = ec->f->n;
|
778
|
|
// переменные в stack
|
779
|
0
|
word* t1 = (word*)stack;
|
780
|
0
|
word* t2 = t1 + n;
|
781
|
0
|
word* t3 = t2 + n;
|
782
|
0
|
stack = t3 + n;
|
783
|
|
// pre
|
784
|
0
|
ASSERT(ecIsOperable(ec));
|
785
|
0
|
ASSERT(ec2SeemsOnA(a, ec));
|
786
|
0
|
ASSERT(ec2SeemsOnA(b, ec));
|
787
|
0
|
ASSERT(wwIsDisjoint(a, c, 2 * n));
|
788
|
|
// xa == xb => (xa, ya) == \pm(xb, yb)
|
789
|
0
|
if (qrCmp(ecX(a), ecX(b), ec->f) == 0)
|
790
|
|
{
|
791
|
|
// (xa, ya) == -(xb, yb)?
|
792
|
0
|
if (qrCmp(ecY(a, n), ecY(b, n), ec->f) != 0)
|
793
|
0
|
return FALSE;
|
794
|
|
// xa == 0 => 2(xa, ya) == O
|
795
|
0
|
if (qrIsZero(ecX(a), ec->f))
|
796
|
0
|
return FALSE;
|
797
|
|
// t1 <- ya / xa + xa [\lambda]
|
798
|
0
|
qrDiv(t1, ecY(a, n), ecX(a), ec->f, stack);
|
799
|
0
|
gf2Add2(t1, ecX(a), ec->f);
|
800
|
|
// t2 <- xa
|
801
|
0
|
qrCopy(t2, ecX(a), ec->f);
|
802
|
|
// xc <- t1^2 + t1 + A [xa^2 + B / xa^2]
|
803
|
0
|
qrSqr(ecX(c), t1, ec->f, stack);
|
804
|
0
|
gf2Add2(ecX(c), t1, ec->f);
|
805
|
0
|
gf2Add2(ecX(c), ec->A, ec->f);
|
806
|
|
// t2 <- t1 * (t2 + xc) [\lambda(xa + xc)]
|
807
|
0
|
gf2Add2(t2, ecX(c), ec->f);
|
808
|
0
|
qrMul(t2, t1, t2, ec->f, stack);
|
809
|
|
// yc <- ya + t2 + xc
|
810
|
0
|
gf2Add(ecY(c, n), ecY(a, n), t2, ec->f);
|
811
|
0
|
gf2Add2(ecY(c, n), ecX(c), ec->f);
|
812
|
|
// получена аффинная точка
|
813
|
0
|
return TRUE;
|
814
|
|
}
|
815
|
|
// t1 <- xa
|
816
|
0
|
qrCopy(t1, ecX(a), ec->f);
|
817
|
|
// xc <- xa + xb
|
818
|
0
|
gf2Add(ecX(c), ecX(a), ecX(b), ec->f);
|
819
|
|
// t2 <- ya + yb
|
820
|
0
|
gf2Add(t2, ecY(a, n), ecY(b, n), ec->f);
|
821
|
|
// t2 <- t2 / xc [\lambda]
|
822
|
0
|
qrDiv(t2, t2, ecX(c), ec->f, stack);
|
823
|
|
// t3 <- t2^2 [\lambda^2]
|
824
|
0
|
qrSqr(t3, t2, ec->f, stack);
|
825
|
|
// xc <- xc + t2 + t3 + A [\lambda^2 + \lambda + (xa + xb) + A]
|
826
|
0
|
gf2Add2(ecX(c), t2, ec->f);
|
827
|
0
|
gf2Add2(ecX(c), t3, ec->f);
|
828
|
0
|
gf2Add2(ecX(c), ec->A, ec->f);
|
829
|
|
// t1 <- t1 + xc [xa + xc]
|
830
|
0
|
gf2Add2(t1, ecX(c), ec->f);
|
831
|
|
// t1 <- t1 * t2 [(xa + xc)\lambda]
|
832
|
0
|
qrMul(t1, t1, t2, ec->f, stack);
|
833
|
|
// yc <- xc + ya + t1 [(xa + xc)\lambda + xc + ya]
|
834
|
0
|
gf2Add(ecY(c, n), ecY(a, n), ecX(c), ec->f);
|
835
|
0
|
gf2Add2(ecY(c, n), t1, ec->f);
|
836
|
|
// получена аффинная точка
|
837
|
0
|
return TRUE;
|
838
|
|
}
|
839
|
|
|
840
|
0
|
size_t ec2AddAA_deep(size_t n, size_t f_deep)
|
841
|
|
{
|
842
|
0
|
return O_OF_W(3 * n) + f_deep;
|
843
|
|
}
|
844
|
|
|
845
|
0
|
bool_t ec2SubAA(word c[], const word a[], const word b[], const ec_o* ec,
|
846
|
|
void* stack)
|
847
|
|
{
|
848
|
0
|
const size_t n = ec->f->n;
|
849
|
|
// переменные в stack
|
850
|
0
|
word* t = (word*)stack;
|
851
|
0
|
stack = t + 2 * n;
|
852
|
|
// t <- -b
|
853
|
0
|
ec2NegA(t, b, ec);
|
854
|
|
// с <- a + t
|
855
|
0
|
return ec2AddAA(c, a, t, ec, stack);
|
856
|
|
}
|
857
|
|
|
858
|
0
|
size_t ec2SubAA_deep(size_t n, size_t f_deep)
|
859
|
|
{
|
860
|
0
|
return O_OF_W(2 * n) + ec2AddAA_deep(n, f_deep);
|
861
|
|
}
|