Replace all
neighbours
withneighbors
Add hotfix to predict_diagnostics
Bump version
Showing 2 of 6 files from the diff.
R/predict_diagnostics.R
changed.
R/plot_predict_diagnostics.R
changed.
Other files ignored by Codecov
DESCRIPTION
has changed.
NEWS.md
has changed.
vignettes/vignette_titanic.Rmd
has changed.
tests/testthat/test_predict_diagnostics.R
has changed.
@@ -53,32 +53,38 @@
Loading
53 | 53 | predict_diagnostics <- function(explainer, new_observation, variables = NULL, ..., nbins = 20, neighbors = 50, distance = gower::gower_dist) { |
|
54 | 54 | test_explainer(explainer, has_data = TRUE, function_name = "predict_diagnostics") |
|
55 | 55 | ||
56 | - | neighbours_id <- select_neighbours_id(new_observation, explainer$data, n = neighbors, distance = distance) |
|
56 | + | ||
57 | + | if (nrow(explainer$data) <= neighbors) { |
|
58 | + | warning("Value of neighbors has to be lower than number of rows in explainer$data. Setting neighbors to nrow(explainer$data)") |
|
59 | + | neighbors <- nrow(explainer$data) - 1 |
|
60 | + | } |
|
61 | + | ||
62 | + | neighbors_id <- select_neighbors_id(new_observation, explainer$data, n = neighbors, distance = distance) |
|
57 | 63 | ||
58 | 64 | ||
59 | 65 | # if variables = NULL then histograms with distribution of residuals are compared against each other |
|
60 | 66 | if (is.null(variables)) { |
|
61 | 67 | residuals_all <- explainer$residual_function(explainer$model, explainer$data, explainer$y, explainer$predict_function) |
|
62 | - | residuals_sel <- residuals_all[neighbours_id] |
|
63 | - | residuals_other <- residuals_all[-neighbours_id] |
|
68 | + | residuals_sel <- residuals_all[neighbors_id] |
|
69 | + | residuals_other <- residuals_all[-neighbors_id] |
|
64 | 70 | ||
65 | 71 | cut_points <- signif(pretty(residuals_other, nbins), 3) |
|
66 | 72 | test.res <- ks.test(residuals_other, residuals_sel) |
|
67 | 73 | ||
68 | - | df1 <- data.frame(as.data.frame(table(cut(residuals_sel, cut_points))/length(residuals_sel)), direction = "neighbours") |
|
74 | + | df1 <- data.frame(as.data.frame(table(cut(residuals_sel, cut_points))/length(residuals_sel)), direction = "neighbors") |
|
69 | 75 | df2 <- data.frame(as.data.frame(-table(cut(residuals_other, cut_points))/length(residuals_other)), direction = "all") |
|
70 | 76 | ||
71 | 77 | res <- list(variables = variables, |
|
72 | - | histogram_neighbours = df1, |
|
78 | + | histogram_neighbors = df1, |
|
73 | 79 | histogram_all = df2, |
|
74 | 80 | test = test.res, |
|
75 | 81 | cut_points = cut_points, |
|
76 | - | neighbours_id = neighbours_id) |
|
82 | + | neighbors_id = neighbors_id) |
|
77 | 83 | } else { |
|
78 | 84 | # if variables is not null then we need to plot either categorical or continouse fidelity plot |
|
79 | 85 | cp_neighbors <- ingredients::ceteris_paribus(explainer, |
|
80 | - | new_observation = explainer$data[neighbours_id, ], |
|
81 | - | y = explainer$y[neighbours_id], |
|
86 | + | new_observation = explainer$data[neighbors_id, ], |
|
87 | + | y = explainer$y[neighbors_id], |
|
82 | 88 | variables = variables, |
|
83 | 89 | ...) |
|
84 | 90 | cp_new_instance <- ingredients::ceteris_paribus(explainer, |
@@ -88,7 +94,7 @@
Loading
88 | 94 | res <- list(variables = variables, |
|
89 | 95 | cp_neighbors = cp_neighbors, |
|
90 | 96 | cp_new_instance = cp_new_instance, |
|
91 | - | neighbours_id = neighbours_id) |
|
97 | + | neighbors_id = neighbors_id) |
|
92 | 98 | } |
|
93 | 99 | class(res) <- "predict_diagnostics" |
|
94 | 100 | res |
@@ -99,7 +105,7 @@
Loading
99 | 105 | individual_diagnostics <- predict_diagnostics |
|
100 | 106 | ||
101 | 107 | ||
102 | - | select_neighbours_id <- function(observation, data, variables = NULL, distance = gower::gower_dist, n = 50, frac = NULL) { |
|
108 | + | select_neighbors_id <- function(observation, data, variables = NULL, distance = gower::gower_dist, n = 50, frac = NULL) { |
|
103 | 109 | if (is.null(variables)) { |
|
104 | 110 | variables <- intersect(colnames(observation), |
|
105 | 111 | colnames(data)) |
@@ -34,7 +34,7 @@
Loading
34 | 34 | plot.predict_diagnostics <- function(x, ...) { |
|
35 | 35 | # if variables are not specified then gow with histogram |
|
36 | 36 | if (is.null(x$variables)) { |
|
37 | - | df <- rbind(x$histogram_neighbours, x$histogram_all) |
|
37 | + | df <- rbind(x$histogram_neighbors, x$histogram_all) |
|
38 | 38 | p.value <- x$test$p.value |
|
39 | 39 | statistic <- x$test$statistic |
|
40 | 40 | cut_points <- x$cut_points |
Files | Coverage |
---|---|
R | 87.07% |
Project Totals (31 files) | 87.07% |
Sunburst
The inner-most circle is the entire project, moving away from the center are folders then, finally, a single file.
The size and color of each slice is representing the number of statements and the coverage, respectively.
Icicle
The top section represents the entire project. Proceeding with folders and finally individual files.
The size and color of each slice is representing the number of statements and the coverage, respectively.