ClaraHapp / MFPCA
Showing 2 of 7 files from the diff.
Newly tracked file
R/univPCA.R changed.
Newly tracked file
R/univDecomp.R changed.
Other files ignored by Codecov
DESCRIPTION has changed.
man/PACE.Rd has changed.
NEWS.md has changed.
man/dot-PACE.Rd has changed.
man/fpcaBasis.Rd has changed.

@@ -5,7 +5,7 @@
Loading
5 5
#' Calculate univariate functional PCA
6 6
#' 
7 7
#' This function is a slightly adapted version of the 
8 -
#' \code{\link[refund]{fpca.sc}} function in the \pkg{refund} package for 
8 +
#' \code{fpca.sc} function in the \strong{refund} package for 
9 9
#' calculating univariate functional principal components based on a smoothed 
10 10
#' covariance function. The smoothing basis functions are penalized splines.
11 11
#' 
@@ -25,7 +25,7 @@
Loading
25 25
#'   covariance estimate? Defaults to \code{FALSE}.
26 26
#' @param cov.weight.type The type of weighting used for the smooth covariance
27 27
#'   estimate. Defaults to \code{"none"}, i.e. no weighting. Alternatively, 
28 -
#'   \code{"counts"} (corresponds to \code{\link[refund]{fpca.sc}} ) weights the pointwise estimates of the covariance function
28 +
#'   \code{"counts"} (corresponds to \code{fpca.sc} in \strong{refund}) weights the pointwise estimates of the covariance function
29 29
#'   by the number of observation points.
30 30
#'   
31 31
#' @return \item{fit}{The approximation of \code{Y.pred} (if \code{NULL}, the 
@@ -37,7 +37,7 @@
Loading
37 37
#'   were calculated.} \item{sigma2}{The estimated variance of the measurement 
38 38
#'   error.}  \item{estVar}{The estimated smooth variance function of the data.}
39 39
#'   
40 -
#' @seealso \code{\link[refund]{fpca.sc}}, \code{\link{PACE}}
40 +
#' @seealso \code{\link{PACE}}
41 41
#'   
42 42
#' @references Di, C., Crainiceanu, C., Caffo, B., and Punjabi, N. (2009). 
43 43
#'   Multilevel functional principal component analysis. Annals of Applied 
@@ -139,7 +139,7 @@
Loading
139 139
#' 
140 140
#' This function calculates a univariate functional principal components 
141 141
#' analysis by smoothed covariance based on code from 
142 -
#' \code{\link[refund]{fpca.sc}} (package \pkg{refund}).
142 +
#' \code{fpca.sc} in package \strong{refund}.
143 143
#' 
144 144
#' @section Warning: This function works only for univariate functional data 
145 145
#'   observed on one-dimensional domains.
@@ -157,19 +157,19 @@
Loading
157 157
#' @param nbasis An integer, representing the number of  B-spline basis 
158 158
#'   functions used for estimation of the mean function and bivariate smoothing 
159 159
#'   of the covariance surface. Defaults to \code{10} (cf. 
160 -
#'   \code{\link[refund]{fpca.sc}}).
160 +
#'   \code{fpca.sc} in \strong{refund}).
161 161
#' @param pve A numeric value between 0 and 1, the proportion of variance 
162 162
#'   explained: used to choose the number of principal components. Defaults to 
163 -
#'   \code{0.99} (cf. \code{\link[refund]{fpca.sc}}).
163 +
#'   \code{0.99} (cf. \code{fpca.sc} in \strong{refund}).
164 164
#' @param npc An integer, giving a prespecified value for the number of 
165 165
#'   principal components. Defaults to \code{NULL}. If given, this overrides 
166 -
#'   \code{pve} (cf. \code{\link[refund]{fpca.sc}}).
166 +
#'   \code{pve} (cf. \code{fpca.sc} in \strong{refund}).
167 167
#' @param makePD Logical: should positive definiteness be enforced for the 
168 168
#'   covariance surface estimate? Defaults to \code{FALSE} (cf. 
169 -
#'   \code{\link[refund]{fpca.sc}}).
169 +
#'   \code{fpca.sc} in \strong{refund}).
170 170
#' @param cov.weight.type The type of weighting used for the smooth covariance 
171 171
#'   estimate. Defaults to \code{"none"}, i.e. no weighting. Alternatively, 
172 -
#'   \code{"counts"} (corresponds to \code{\link[refund]{fpca.sc}} ) weights the
172 +
#'   \code{"counts"} (corresponds to \code{fpca.sc} in \strong{refund}) weights the
173 173
#'   pointwise estimates of the covariance function by the number of observation
174 174
#'   points.
175 175
#'   
@@ -186,12 +186,12 @@
Loading
186 186
#'   (if \code{predData} is \code{NULL}).} \item{npc}{The number of functional 
187 187
#'   principal components: either the supplied \code{npc}, or the minimum number
188 188
#'   of basis functions needed to explain proportion \code{pve} of the variance 
189 -
#'   in the observed curves (cf. \code{\link[refund]{fpca.sc}}).} 
189 +
#'   in the observed curves (cf. \code{fpca.sc} in \strong{refund}).} 
190 190
#'   \item{sigma2}{The estimated measurement error variance (cf. 
191 -
#'   \code{\link[refund]{fpca.sc}}).} \item{estVar}{The estimated smooth
191 +
#'   \code{fpca.sc} in \strong{refund}).} \item{estVar}{The estimated smooth
192 192
#'   variance function of the data.}
193 193
#'   
194 -
#' @seealso \code{\link[funData]{funData}}, \code{\link[refund]{fpca.sc}}, 
194 +
#' @seealso \code{\link[funData]{funData}}, 
195 195
#'   \code{\link{fpcaBasis}}, \code{\link{univDecomp}}
196 196
#'   
197 197
#' @export PACE

@@ -174,7 +174,7 @@
Loading
174 174
#' This function calculates a functional principal component basis
175 175
#' representation for functional data on one-dimensional domains. The FPCA is
176 176
#' calculated via the \code{\link{PACE}} function, which is built on
177 -
#' \link[refund]{fpca.sc} in the \pkg{refund} package.
177 +
#' \code{fpca.sc} in the \strong{refund} package.
178 178
#' 
179 179
#' @param funDataObject An object of class \code{\link[funData]{funData}} 
180 180
#'   containing the observed functional data samples and for which the FPCA is 
@@ -182,19 +182,19 @@
Loading
182 182
#' @param nbasis An integer, representing the number of  B-spline basis 
183 183
#'   functions used for estimation of the mean function and bivariate smoothing 
184 184
#'   of the covariance surface. Defaults to \code{10} (cf. 
185 -
#'   \code{\link[refund]{fpca.sc}}).
185 +
#'   \code{fpca.sc} in \strong{refund}).
186 186
#' @param pve A numeric value between 0 and 1, the proportion of variance 
187 187
#'   explained: used to choose the number of principal components. Defaults to 
188 -
#'   \code{0.99} (cf. \code{\link[refund]{fpca.sc}}).
188 +
#'   \code{0.99} (cf. \code{fpca.sc} in \strong{refund}).
189 189
#' @param npc An integer, giving a prespecified value for the number of 
190 190
#'   principal components. Defaults to \code{NULL}. If given, this overrides 
191 -
#'   \code{pve} (cf. \code{\link[refund]{fpca.sc}}).
191 +
#'   \code{pve} (cf. \code{fpca.sc} in \strong{refund}).
192 192
#' @param makePD Logical: should positive definiteness be enforced for the 
193 193
#'   covariance surface estimate? Defaults to \code{FALSE} (cf. 
194 -
#'   \code{\link[refund]{fpca.sc}}).
194 +
#'   \code{fpca.sc} in \strong{refund}).
195 195
#' @param cov.weight.type The type of weighting used for the smooth covariance
196 196
#'   estimate in \code{\link{PACE}}. Defaults to \code{"none"}, i.e. no weighting. Alternatively, 
197 -
#'   \code{"counts"} (corresponds to \code{\link[refund]{fpca.sc}} ) weights the pointwise estimates of the covariance function
197 +
#'   \code{"counts"} (corresponds to \code{fpca.sc} in \strong{refund}) weights the pointwise estimates of the covariance function
198 198
#'   by the number of observation points.
199 199
#'   
200 200
#' @return \item{scores}{A matrix of scores (coefficients) with dimension 
Files Coverage
R 91.66%
src 100.00%
Project Totals (12 files) 91.71%
Sunburst
The inner-most circle is the entire project, moving away from the center are folders then, finally, a single file. The size and color of each slice is representing the number of statements and the coverage, respectively.
Icicle
The top section represents the entire project. Proceeding with folders and finally individual files. The size and color of each slice is representing the number of statements and the coverage, respectively.
Grid
Each block represents a single file in the project. The size and color of each block is represented by the number of statements and the coverage, respectively.
Loading